본문

서브메뉴

Lower Bounds on the Complexity of Quantum Proofs- [electronic resource]
Lower Bounds on the Complexity of Quantum Proofs- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016931145
International Standard Book Number  
9798380623308
Dewey Decimal Classification Number  
004
Main Entry-Personal Name  
Nirkhe, Chinmay.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of California, Berkeley., 2022
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2022
Physical Description  
1 online resource(76 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-05, Section: B.
General Note  
Advisor: Vazirani, Umesh.
Dissertation Note  
Thesis (Ph.D.)--University of California, Berkeley, 2022.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약The quantum PCP conjecture is one of the central open questions in quantum complexity theory. It asserts that calculating even a rough approximation to the ground energy of a local Hamiltonian is intractable even for quantum devices. The widely believed separation between the complexity classes NP and QMA necessitates that polynomial length classical proofs do not exist for calculating the ground energy. This further implies that low-energy states of local Hamiltonians cannot be described by constant depth quantum circuits. The No low-energy trivial states (NLTS) conjecture by Freedman and Hastings posited the existence of such Hamiltonians.This thesis describes a line of research culminating in a proof of the NLTS conjecture, first presented by Anshu, Breuckmann, and Nirkhe. The construction is based on quantum error correction and the thesis elaborates on how error correction, local Hamiltonians, and low-depth quantum circuits are related.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Quantum physics.
Subject Added Entry-Topical Term  
Mechanics.
Index Term-Uncontrolled  
Complexity theory
Index Term-Uncontrolled  
Error correction
Index Term-Uncontrolled  
Lower bounds
Index Term-Uncontrolled  
Probabilistically checkable proofs
Index Term-Uncontrolled  
Hamiltonians
Added Entry-Corporate Name  
University of California, Berkeley Computer Science
Host Item Entry  
Dissertations Abstracts International. 85-05B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:641725

MARC

 008240221s2022        ulk                      00        kor
■001000016931145
■00520240214095926
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380623308
■035    ▼a(MiAaPQ)AAI29327432
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a004
■1001  ▼aNirkhe,  Chinmay.
■24510▼aLower  Bounds  on  the  Complexity  of  Quantum  Proofs▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  California,  Berkeley.  ▼c2022
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2022
■300    ▼a1  online  resource(76  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-05,  Section:  B.
■500    ▼aAdvisor:  Vazirani,  Umesh.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  Berkeley,  2022.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aThe  quantum  PCP  conjecture  is  one  of  the  central  open  questions  in  quantum  complexity  theory.  It  asserts  that  calculating  even  a  rough  approximation  to  the  ground  energy  of  a  local  Hamiltonian  is  intractable  even  for  quantum  devices.  The  widely  believed  separation  between  the  complexity  classes  NP  and  QMA  necessitates  that  polynomial  length  classical  proofs  do  not  exist  for  calculating  the  ground  energy.  This  further  implies  that  low-energy  states  of  local  Hamiltonians  cannot  be  described  by  constant  depth  quantum  circuits.  The  No  low-energy  trivial  states  (NLTS)  conjecture  by  Freedman  and  Hastings  posited  the  existence  of  such  Hamiltonians.This  thesis  describes  a  line  of  research  culminating  in  a  proof  of  the  NLTS  conjecture,  first  presented  by  Anshu,  Breuckmann,  and  Nirkhe.  The  construction  is  based  on  quantum  error  correction  and  the  thesis  elaborates  on  how  error  correction,  local  Hamiltonians,  and  low-depth  quantum  circuits  are  related.
■590    ▼aSchool  code:  0028.
■650  4▼aComputer  science.
■650  4▼aQuantum  physics.
■650  4▼aMechanics.
■653    ▼aComplexity  theory
■653    ▼aError  correction
■653    ▼aLower  bounds
■653    ▼aProbabilistically  checkable  proofs
■653    ▼aHamiltonians
■690    ▼a0984
■690    ▼a0599
■690    ▼a0346
■71020▼aUniversity  of  California,  Berkeley▼bComputer  Science.
■7730  ▼tDissertations  Abstracts  International▼g85-05B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0028
■791    ▼aPh.D.
■792    ▼a2022
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16931145▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    高级搜索信息

    • 预订
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 我的文件夹
    材料
    注册编号 呼叫号码. 收藏 状态 借信息.
    TQ0027639 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *保留在借用的书可用。预订,请点击预订按钮

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치