본문

서브메뉴

Facilitating the Clean Energy Transition Through Advanced Modeling and Algorithmic Methods for Reliable and Efficient Decarbonization- [electronic resource]
내용보기
Facilitating the Clean Energy Transition Through Advanced Modeling and Algorithmic Methods for Reliable and Efficient Decarbonization- [electronic resource]
자료유형  
 학위논문
Control Number  
0016934329
International Standard Book Number  
9798380313933
Dewey Decimal Classification Number  
621
Main Entry-Personal Name  
Liu, Mengwei Vivienne.
Publication, Distribution, etc. (Imprint  
[S.l.] : Cornell University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(217 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-03, Section: B.
General Note  
Advisor: Anderson, Catherine.
Dissertation Note  
Thesis (Ph.D.)--Cornell University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약A global surge in climate-energy policies signifies the shared recognition of the urgent imperative to combat climate change and transition to renewable and sustainable energy systems. These goals mark a significant shift toward a decarbonized future, exemplifying governments' commitment at all levels to address the pressing challenges posed by climate change. However, the integration of renewable resources introduces a considerable degree of variability and uncertainty, which poses challenges for both day-to-day system operation and long-term grid planning. Regarding daily operations, the decentralized system demands attention to innovative control strategies that effectively harness intermittent renewable resources while maintaining reliability and economic expectations. This calls for effective utilization of renewable resources to meet emission reduction targets while ensuring grid reliability and economic efficiency. In terms of long-term planning, the dynamic nature of climatic and technological changes adds complexity, necessitating a delicate balance between supply and demand within the system as the penetration level of renewable energy increases. The challenges for the planning and control problems require distinct formulation for the problems on different time scales. Therefore, this dissertation is structured in two major directions by using advanced modeling and algorithmic tools to facilitate the clean energy transition: 1) to design adaptive robust decision-making frameworks for the short-term energy management of distributed power systems considering multiple potentially conflicting objectives; and 2) to develop practical models that capture the intricacies of the energy system and identify the vulnerability of the future carbon-free energy system under long-term climate and technology changes for system planningThe main conclusions drawn from this research are: 1) The proposed robust adaptive decision-making framework demonstrates significant improvements in the energy management of the Cornell campus microgrid. Across all objectives considered, the framework outperforms the current operating strategy implemented on campus, showcasing its potential for enhancing the system's performance. 2) The vulnerability of the future power system exhibits spatio-temporal heterogeneity, driven by the seasonal and daily variability of renewable resources and transmission bottlenecks. This finding emphasizes the need to consider these factors in planning and decision-making processes. 3) The observed spatiotemporal heterogeneity highlights the importance of efficient utilization of renewable resources. Blindly expanding renewable energy capacity without considering the specific characteristics of different locations and seasons can result in suboptimal resource utilization. These findings contribute to the understanding of clean energy transitions and provide valuable information to policymakers, grid operators, and stakeholders. By leveraging advanced modeling techniques and decision-making frameworks, this research contributes to the advancement of sustainable and efficient energy systems.
Subject Added Entry-Topical Term  
Energy.
Subject Added Entry-Topical Term  
Electrical engineering.
Subject Added Entry-Topical Term  
Civil engineering.
Index Term-Uncontrolled  
Climate-energy policy
Index Term-Uncontrolled  
Decision-making
Index Term-Uncontrolled  
Energy transition
Index Term-Uncontrolled  
Microgrid energy management
Index Term-Uncontrolled  
Multi-objective optimization
Index Term-Uncontrolled  
Power grids operation
Added Entry-Corporate Name  
Cornell University Systems Engineering
Host Item Entry  
Dissertations Abstracts International. 85-03B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:641697
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 캠퍼스간 도서대출
  • 서가에 없는 책 신고
  • 나의폴더
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TQ0027611 T   원문자료 열람가능/출력가능 열람가능/출력가능
마이폴더 부재도서신고

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련도서

관련 인기도서

도서위치