본문

서브메뉴

Multiphase Flow Modeling of Liquid Injectors- [electronic resource]
Multiphase Flow Modeling of Liquid Injectors- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016932904
International Standard Book Number  
9798379871895
Dewey Decimal Classification Number  
530
Main Entry-Personal Name  
Guerra, Joel Tynan.
Publication, Distribution, etc. (Imprint  
[S.l.] : North Carolina State University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(151 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
General Note  
Advisor: Watson, Benjamin;Edwards, Jack R.
Dissertation Note  
Thesis (Ph.D.)--North Carolina State University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Techniques for modeling internal and external multiphase flows of injectors are investigated. Jet-in-crossflows have been extensively studied using a one-way coupled Eulerian/Lagrangian method, in which discrete droplets are injected at a mass flow rate equal to the continuous phase value. Both aerated- and pure- liquid injection cases are presented. Key improvements that pertain to the aerated-liquid injection simulations involve a vaporization scheme that transfers mass from the droplet phase to the continuous phase, and a new method of determining the vapor mass fraction from the droplet phase, thus improving the relative velocity estimate. The pure-liquid injection cases relied on the development of a new primary breakup model in which small droplets are stripped off large, recently injected parent droplets. Different child position formulations were tested to determine the influence of child position on overall spray dynamics. The improved relative velocity estimation from the aerated-liquid injection case was also used. Lastly, a modified version of the secondary breakup model used in the aerated-liquid injection study was implemented as a competing breakup mechanism against the primary model. Ultimately, using the relative velocity estimation based on the droplet phase mass fraction was the biggest factor in improving qualitative results. In all cases, large droplets are more likely to maintain their vertical momentum induced via injection. Once they escape the initial dense liquid column they experience little drag and turn downstream at a large angle, increasing the overall plume size. Droplets that experience high degrees of relative velocity will experience high drag values, causing them to break up into large numbers of small droplets and start to turn downstream. Smaller droplets follow the crossflow more closely. As a result, cases that have smaller distributions of droplets correspond to plumes with smaller penetration heights. The dissolution of carbon dioxide into a surrogate diesel fuel was investigated as a means of alternative atomization from aerated-liquid injection. This hinged on the development of a new vapor-liquid equilibrium routine which could predict the equilibrium state of gas bubbling out of a pseudo-liquid mixture. The addition of carbon dioxide results in a significantly different velocity profile within the nozzle. As the pressure decreases through the nozzle, the expanding gas results in an area reduction, causing the liquid velocity to rise. Not all carbon dioxide is found to bubble out of the mixture, suggesting that additional atomization may occur after injection.
Subject Added Entry-Topical Term  
Phase transitions.
Subject Added Entry-Topical Term  
Viscosity.
Subject Added Entry-Topical Term  
Heat conductivity.
Subject Added Entry-Topical Term  
Thermodynamics.
Added Entry-Corporate Name  
North Carolina State University.
Host Item Entry  
Dissertations Abstracts International. 85-01B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:641677

MARC

 008240221s2023        ulk                      00        kor
■001000016932904
■00520240214101138
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379871895
■035    ▼a(MiAaPQ)AAI30516355
■035    ▼a(MiAaPQ)NCState_Univ18402040767
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a530
■1001  ▼aGuerra,  Joel  Tynan.
■24510▼aMultiphase  Flow  Modeling  of  Liquid  Injectors▼h[electronic  resource]
■260    ▼a[S.l.]▼bNorth  Carolina  State  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(151  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-01,  Section:  B.
■500    ▼aAdvisor:  Watson,  Benjamin;Edwards,  Jack  R.
■5021  ▼aThesis  (Ph.D.)--North  Carolina  State  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aTechniques  for  modeling  internal  and  external  multiphase  flows  of  injectors  are  investigated.  Jet-in-crossflows  have  been  extensively  studied  using  a  one-way  coupled  Eulerian/Lagrangian  method,  in  which  discrete  droplets  are  injected  at  a  mass  flow  rate  equal  to  the  continuous  phase  value.  Both  aerated-  and  pure-  liquid  injection  cases  are  presented.  Key  improvements  that  pertain  to  the  aerated-liquid  injection  simulations  involve  a  vaporization  scheme  that  transfers  mass  from  the  droplet  phase  to  the  continuous  phase,  and  a  new  method  of  determining  the  vapor  mass  fraction  from  the  droplet  phase,  thus  improving  the  relative  velocity  estimate.  The  pure-liquid  injection  cases  relied  on  the  development  of  a  new  primary  breakup  model  in  which  small  droplets  are  stripped  off  large,  recently  injected  parent  droplets.  Different  child  position  formulations  were  tested  to  determine  the  influence  of  child  position  on  overall  spray  dynamics.  The  improved  relative  velocity  estimation  from  the  aerated-liquid  injection  case  was  also  used.  Lastly,  a  modified  version  of  the  secondary  breakup  model  used  in  the  aerated-liquid  injection  study  was  implemented  as  a  competing  breakup  mechanism  against  the  primary  model.  Ultimately,  using  the  relative  velocity  estimation  based  on  the  droplet  phase  mass  fraction  was  the  biggest  factor  in  improving  qualitative  results.  In  all  cases,  large  droplets  are  more  likely  to  maintain  their  vertical  momentum  induced  via  injection.  Once  they  escape  the  initial  dense  liquid  column  they  experience  little  drag  and  turn  downstream  at  a  large  angle,  increasing  the  overall  plume  size.  Droplets  that  experience  high  degrees  of  relative  velocity  will  experience  high  drag  values,  causing  them  to  break  up  into  large  numbers  of  small  droplets  and  start  to  turn  downstream.  Smaller  droplets  follow  the  crossflow  more  closely.  As  a  result,  cases  that  have  smaller  distributions  of  droplets  correspond  to  plumes  with  smaller  penetration  heights.  The  dissolution  of  carbon  dioxide  into  a  surrogate  diesel  fuel  was  investigated  as  a  means  of  alternative  atomization  from  aerated-liquid  injection.  This  hinged  on  the  development  of  a  new  vapor-liquid  equilibrium  routine  which  could  predict  the  equilibrium  state  of  gas  bubbling  out  of  a  pseudo-liquid  mixture.  The  addition  of  carbon  dioxide  results  in  a  significantly  different  velocity  profile  within  the  nozzle.  As  the  pressure  decreases  through  the  nozzle,  the  expanding  gas  results  in  an  area  reduction,  causing  the  liquid  velocity  to  rise.  Not  all  carbon  dioxide  is  found  to  bubble  out  of  the  mixture,  suggesting  that  additional  atomization  may  occur  after  injection.
■590    ▼aSchool  code:  0155.
■650  4▼aPhase  transitions.
■650  4▼aViscosity.
■650  4▼aHeat  conductivity.
■650  4▼aThermodynamics.
■690    ▼a0348
■71020▼aNorth  Carolina  State  University.
■7730  ▼tDissertations  Abstracts  International▼g85-01B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0155
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16932904▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    detalle info

    • Reserva
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Mi carpeta
    Material
    número de libro número de llamada Ubicación estado Prestar info
    TQ0027595 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Las reservas están disponibles en el libro de préstamos. Para hacer reservaciones, haga clic en el botón de reserva

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치