본문

서브메뉴

Height Profile Modeling and Control of Inkjet 3D Printing- [electronic resource]
Height Profile Modeling and Control of Inkjet 3D Printing- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016932900
International Standard Book Number  
9798379840662
Dewey Decimal Classification Number  
600
Main Entry-Personal Name  
Wu, Yumeng.
Publication, Distribution, etc. (Imprint  
[S.l.] : Purdue University., 2022
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2022
Physical Description  
1 online resource(117 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-01, Section: A.
General Note  
Advisor: Chiu, George T.-C.
Dissertation Note  
Thesis (Ph.D.)--Purdue University, 2022.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Among all additive manufacturing processes, material jetting, or inkjet 3D printing, builds the product similar to the traditional inkjet printing, either by drop-on-demand or continuous printing. Aside from the common advantages as other additive manufacturing methods, it can achieve higher resolution than other additive manufacturing methods. Combining its ability to accept a wide range of functional inks, inkjet 3D printing is predominantly used in pharmaceutical and biomedical applications. A height profile model is necessary to achieve better estimation of the geometry of a printed product. Numerical height profile models have been documented that can estimate the inkjet printing process from when the droplet hits the substrate till fully cured. Although they can estimate height profiles relatively accurately, these models generally take a long time to compute. A simplified model that can achieve sufficient accuracy while reducing computational complexity is needed for real-time process control.In this work, a layer-to-layer height propagation model that aims to balance computational complexity and model accuracy is proposed and experimentally validated. The model consists of two sub-models where one is dedicated to multi-layer line printing and the other is more broadly applicable for multi-layer 2D patterns. Both models predict the height profile of drops through separate volume and area layer-to-layer propagation. The layer-to-layer propagation is based on material flow and volume conservation. The models are experimentally validated on an experimental inkjet 3D printing system equipped with a heated piezoelectric dispenser head made by Microdrop.There are notable similarities between inkjet 3D printing and inkjet image printing, which has been studied extensively to improve color printing quality. Image processing techniques are necessary to convert nearly continuous levels of color intensities to binary printing map while satisfying the human visual system at the same time. It is reasonable to leverage such image processing techniques to improve the quality of inkjet 3D printed products, which might be more effective and efficient. A framework is proposed to adapt image processing techniques for inkjet 3D printing. Standard error diffusion method is chosen as a demonstration of the framework to be adapted for inkjet 3D printing and this adaption is experimentally validated. The adapted error diffusion method can improve the printing quality in terms of geometry integrity with low demand on computation power.Model predictive control has been widely used for process control in various industries. With a carefully designed cost function, model predictive control can be an effective tool to improve inkjet 3D printing. While many researchers utilized model predictive control to indirectly improves functional side of the printed products, geometry control is often overlooked. This is possibly due to the lack of high quality height profile models for inkjet 3D printing for real-time control. Height profile control of inkjet 3D printing can be formulated as a constrained non-linear model predictive control problem. The input to the printing system is always constrained, as droplet volume not only is bounded but also cannot be continuously adjusted due to the limitation of the printhead. A specific cost function is proposed to account for the geometry of both the final printed product and the intermediate layers better.
Subject Added Entry-Topical Term  
Metals.
Subject Added Entry-Topical Term  
Propagation.
Subject Added Entry-Topical Term  
Viscosity.
Subject Added Entry-Topical Term  
Pharmaceuticals.
Subject Added Entry-Topical Term  
Polymerization.
Subject Added Entry-Topical Term  
3-D printers.
Subject Added Entry-Topical Term  
Geometry.
Subject Added Entry-Topical Term  
Industrial Revolution.
Subject Added Entry-Topical Term  
Hydrogels.
Subject Added Entry-Topical Term  
Drug dosages.
Subject Added Entry-Topical Term  
Composite materials.
Subject Added Entry-Topical Term  
Robotics.
Subject Added Entry-Topical Term  
European history.
Subject Added Entry-Topical Term  
History.
Subject Added Entry-Topical Term  
Industrial engineering.
Subject Added Entry-Topical Term  
Materials science.
Subject Added Entry-Topical Term  
Pharmaceutical sciences.
Added Entry-Corporate Name  
Purdue University.
Host Item Entry  
Dissertations Abstracts International. 85-01A.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:641675

MARC

 008240221s2022        ulk                      00        kor
■001000016932900
■00520240214101126
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379840662
■035    ▼a(MiAaPQ)AAI30506104
■035    ▼a(MiAaPQ)Purdue21334815
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a600
■1001  ▼aWu,  Yumeng.
■24510▼aHeight  Profile  Modeling  and  Control  of  Inkjet  3D  Printing▼h[electronic  resource]
■260    ▼a[S.l.]▼bPurdue  University.  ▼c2022
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2022
■300    ▼a1  online  resource(117  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-01,  Section:  A.
■500    ▼aAdvisor:  Chiu,  George  T.-C.
■5021  ▼aThesis  (Ph.D.)--Purdue  University,  2022.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aAmong  all  additive  manufacturing  processes,  material  jetting,  or  inkjet  3D  printing,  builds  the  product  similar  to  the  traditional  inkjet  printing,  either  by  drop-on-demand  or  continuous  printing.  Aside  from  the  common  advantages  as  other  additive  manufacturing  methods,  it  can  achieve  higher  resolution  than  other  additive  manufacturing  methods.  Combining  its  ability  to  accept  a  wide  range  of  functional  inks,  inkjet  3D  printing  is  predominantly  used  in  pharmaceutical  and  biomedical  applications.  A  height  profile  model  is  necessary  to  achieve  better  estimation  of  the  geometry  of  a  printed  product.  Numerical  height  profile  models  have  been  documented  that  can  estimate  the  inkjet  printing  process  from  when  the  droplet  hits  the  substrate  till  fully  cured.  Although  they  can  estimate  height  profiles  relatively  accurately,  these  models  generally  take  a  long  time  to  compute.  A  simplified  model  that  can  achieve  sufficient  accuracy  while  reducing  computational  complexity  is  needed  for  real-time  process  control.In  this  work,  a  layer-to-layer  height  propagation  model  that  aims  to  balance  computational  complexity  and  model  accuracy  is  proposed  and  experimentally  validated.  The  model  consists  of  two  sub-models  where  one  is  dedicated  to  multi-layer  line  printing  and  the  other  is  more  broadly  applicable  for  multi-layer  2D  patterns.  Both  models  predict  the  height  profile  of  drops  through  separate  volume  and  area  layer-to-layer  propagation.  The  layer-to-layer  propagation  is  based  on  material  flow  and  volume  conservation.  The  models  are  experimentally  validated  on  an  experimental  inkjet  3D  printing  system  equipped  with  a  heated  piezoelectric  dispenser  head  made  by  Microdrop.There  are  notable  similarities  between  inkjet  3D  printing  and  inkjet  image  printing,  which  has  been  studied  extensively  to  improve  color  printing  quality.  Image  processing  techniques  are  necessary  to  convert  nearly  continuous  levels  of  color  intensities  to  binary  printing  map  while  satisfying  the  human  visual  system  at  the  same  time.  It  is  reasonable  to  leverage  such  image  processing  techniques  to  improve  the  quality  of  inkjet  3D  printed  products,  which  might  be  more  effective  and  efficient.  A  framework  is  proposed  to  adapt  image  processing  techniques  for  inkjet  3D  printing.  Standard  error  diffusion  method  is  chosen  as  a  demonstration  of  the  framework  to  be  adapted  for  inkjet  3D  printing  and  this  adaption  is  experimentally  validated.  The  adapted  error  diffusion  method  can  improve  the  printing  quality  in  terms  of  geometry  integrity  with  low  demand  on  computation  power.Model  predictive  control  has  been  widely  used  for  process  control  in  various  industries.  With  a  carefully  designed  cost  function,  model  predictive  control  can  be  an  effective  tool  to  improve  inkjet  3D  printing.  While  many  researchers  utilized  model  predictive  control  to  indirectly  improves  functional  side  of  the  printed  products,  geometry  control  is  often  overlooked.  This  is  possibly  due  to  the  lack  of  high  quality  height  profile  models  for  inkjet  3D  printing  for  real-time  control.  Height  profile  control  of  inkjet  3D  printing  can  be  formulated  as  a  constrained  non-linear  model  predictive  control  problem.  The  input  to  the  printing  system  is  always  constrained,  as  droplet  volume  not  only  is  bounded  but  also  cannot  be  continuously  adjusted  due  to  the  limitation  of  the  printhead.  A  specific  cost  function  is  proposed  to  account  for  the  geometry  of  both  the  final  printed  product  and  the  intermediate  layers  better.
■590    ▼aSchool  code:  0183.
■650  4▼aMetals.
■650  4▼aPropagation.
■650  4▼aViscosity.
■650  4▼aPharmaceuticals.
■650  4▼aPolymerization.
■650  4▼a3-D  printers.
■650  4▼aGeometry.
■650  4▼aIndustrial  Revolution.
■650  4▼aHydrogels.
■650  4▼aDrug  dosages.
■650  4▼aComposite  materials.
■650  4▼aRobotics.
■650  4▼aEuropean  history.
■650  4▼aHistory.
■650  4▼aIndustrial  engineering.
■650  4▼aMaterials  science.
■650  4▼aPharmaceutical  sciences.
■690    ▼a0771
■690    ▼a0335
■690    ▼a0578
■690    ▼a0546
■690    ▼a0794
■690    ▼a0572
■71020▼aPurdue  University.
■7730  ▼tDissertations  Abstracts  International▼g85-01A.
■773    ▼tDissertation  Abstract  International
■790    ▼a0183
■791    ▼aPh.D.
■792    ▼a2022
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16932900▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0027593 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치