본문

서브메뉴

Multi-Agent Planning Under Uncertainty- [electronic resource]
Multi-Agent Planning Under Uncertainty- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016934220
International Standard Book Number  
9798380318549
Dewey Decimal Classification Number  
629.1
Main Entry-Personal Name  
Asfora, Beatriz Arruda.
Publication, Distribution, etc. (Imprint  
[S.l.] : Cornell University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(142 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-03, Section: B.
General Note  
Advisor: Campbell, Mark.
Dissertation Note  
Thesis (Ph.D.)--Cornell University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약The development of foundational theory and validated algorithms for human-robot teams operating in complex environments, capable of adapting as knowledge of the environment and tasks evolves over time, is a crucial area of research. As data becomes available, there is a need for evolving planning strategies to effectively utilize the information. In the specific context of search and rescue (SaR) scenarios, the high-level goals are to locate survivors, simulate rescue by having humans meet survivors, and minimize the risk to human team members. Ultimately, we seek to improve human-cooperation under uncertainty, as well as team performance and safety. This thesis explores probabilistic driven multi-agent planning approaches, motivated by the challenges posed by SaR missions.First, we investigate the problem of multi-robot non-adversarial search. Uncertainty is present in the victim's true location as only probabilistic information is available a priori. In this context, we seek to find the optimal (or near optimal) path that maximizes the likelihood that our search team can intercept the target given a mission deadline. We prove this problem to be NP-hard, and present the first set of Mixed-Integer Linear Programming (MILP) models to encompass multiple searchers, arbitrary capture ranges, and false negatives simultaneously. The adoption of MILP as a planning paradigm allows to leverage the powerful techniques of modern solvers, yielding better computational performance and, as a consequence, longer planning horizons than the previous state-of-the-art.We build upon the proposed models to incorporate the concept of danger, estimated through a human-robot shared scene perception scheme, allowing for environment knowledge to evolve throughout the mission. The trade-off between risk vs reward is explored through conditional planning, based on the distinct agents' tolerances to danger.We then consider other tasks beyond search in our mission, and ultimately even the planned routes and completion of tasks are modeled in a probabilistic manner. We introduce a novel problem formulation that incorporates probabilistic knowledge of task requirements, dependencies between tasks and their relative locations, heterogeneity of agents' capabilities and an environment that might change as the agents interact with it. Performance assessment of possible mission plans is thus based on probabilistic predictions and tangible reward concepts for team forming, another important aspect of SaR missions.
Subject Added Entry-Topical Term  
Aerospace engineering.
Subject Added Entry-Topical Term  
Robotics.
Subject Added Entry-Topical Term  
Computer science.
Index Term-Uncontrolled  
Mixed-Integer Linear Programming
Index Term-Uncontrolled  
Optimization
Index Term-Uncontrolled  
Planning
Index Term-Uncontrolled  
Probability
Index Term-Uncontrolled  
Uncertainty
Added Entry-Corporate Name  
Cornell University Aerospace Engineering
Host Item Entry  
Dissertations Abstracts International. 85-03B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:641584

MARC

 008240221s2023        ulk                      00        kor
■001000016934220
■00520240214101543
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380318549
■035    ▼a(MiAaPQ)AAI30573344
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a629.1
■1001  ▼aAsfora,  Beatriz  Arruda.▼0(orcid)0000-0003-3726-2947
■24510▼aMulti-Agent  Planning  Under  Uncertainty▼h[electronic  resource]
■260    ▼a[S.l.]▼bCornell  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(142  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-03,  Section:  B.
■500    ▼aAdvisor:  Campbell,  Mark.
■5021  ▼aThesis  (Ph.D.)--Cornell  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aThe  development  of  foundational  theory  and  validated  algorithms  for  human-robot  teams  operating  in  complex  environments,  capable  of  adapting  as  knowledge  of  the  environment  and  tasks  evolves  over  time,  is  a  crucial  area  of  research.  As  data  becomes  available,  there  is  a  need  for  evolving  planning  strategies  to  effectively  utilize  the  information.  In  the  specific  context  of  search  and  rescue  (SaR)  scenarios,  the  high-level  goals  are  to  locate  survivors,  simulate  rescue  by  having  humans  meet  survivors,  and  minimize  the  risk  to  human  team  members.  Ultimately,  we  seek  to  improve  human-cooperation  under  uncertainty,  as  well  as  team  performance  and  safety.  This  thesis  explores  probabilistic  driven  multi-agent  planning  approaches,  motivated  by  the  challenges  posed  by  SaR  missions.First,  we  investigate  the  problem  of  multi-robot  non-adversarial  search.  Uncertainty  is  present  in  the  victim's  true  location  as  only  probabilistic  information  is  available  a  priori.  In  this  context,  we  seek  to  find  the  optimal  (or  near  optimal)  path  that  maximizes  the  likelihood  that  our  search  team  can  intercept  the  target  given  a  mission  deadline.  We  prove  this  problem  to  be  NP-hard,  and  present  the  first  set  of  Mixed-Integer  Linear  Programming  (MILP)  models  to  encompass  multiple  searchers,  arbitrary  capture  ranges,  and  false  negatives  simultaneously.  The  adoption  of  MILP  as  a  planning  paradigm  allows  to  leverage  the  powerful  techniques  of  modern  solvers,  yielding  better  computational  performance  and,  as  a  consequence,  longer  planning  horizons  than  the  previous  state-of-the-art.We  build  upon  the  proposed  models  to  incorporate  the  concept  of  danger,  estimated  through  a  human-robot  shared  scene  perception  scheme,  allowing  for  environment  knowledge  to  evolve  throughout  the  mission.  The  trade-off  between  risk  vs  reward  is  explored  through  conditional  planning,  based  on  the  distinct  agents'  tolerances  to  danger.We  then  consider  other  tasks  beyond  search  in  our  mission,  and  ultimately  even  the  planned  routes  and  completion  of  tasks  are  modeled  in  a  probabilistic  manner.  We  introduce  a  novel  problem  formulation  that  incorporates  probabilistic  knowledge  of  task  requirements,  dependencies  between  tasks  and  their  relative  locations,  heterogeneity  of  agents'  capabilities  and  an  environment  that  might  change  as  the  agents  interact  with  it.  Performance  assessment  of  possible  mission  plans  is  thus  based  on  probabilistic  predictions  and  tangible  reward  concepts  for  team  forming,  another  important  aspect  of  SaR  missions.
■590    ▼aSchool  code:  0058.
■650  4▼aAerospace  engineering.
■650  4▼aRobotics.
■650  4▼aComputer  science.
■653    ▼aMixed-Integer  Linear  Programming
■653    ▼aOptimization
■653    ▼aPlanning
■653    ▼aProbability
■653    ▼aUncertainty
■690    ▼a0538
■690    ▼a0771
■690    ▼a0984
■71020▼aCornell  University▼bAerospace  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g85-03B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0058
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16934220▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0027469 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치