본문

서브메뉴

Disorder-Driven Phase Transitions in Weak, Boundary-Obstructed, and Non-Hermitian Topological Insulators- [electronic resource]
Disorder-Driven Phase Transitions in Weak, Boundary-Obstructed, and Non-Hermitian Topological Insulators- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016935235
International Standard Book Number  
9798380106160
Dewey Decimal Classification Number  
530
Main Entry-Personal Name  
Claes, Jahan.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Illinois at Urbana-Champaign., 2021
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2021
Physical Description  
1 online resource(160 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-02, Section: B.
General Note  
Advisor: Vishveshwara, Smitha;Hughes, Taylor L. .
Dissertation Note  
Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2021.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Restrictions on Access Note  
This item must not be added to any third party search indexes.
Summary, Etc.  
요약This thesis focuses on three main areas in quantum physics. The bulk of this thesis addresses the effects of disorder on novel classes of topological insulators. Topological insulators are states of matter that display properties-most notably, protected anomalous edge states-that are robust to symmetry-preserving disorder. While the properties of "classical" tenfold way topological insulators under disorder are well-understood, there exist other topological phases whose behavior under disorder has yet to be characterized. In this portion of the thesis, we will develop real-space methods to compute weak, boundary-obstructed, and non-Hermitian topological invariants, establish their stability at weak and strong disorder, and connect these disordered topological invariants to physical signatures.The remainder of the thesis contains an eclectic mix of other work that broadly focuses on the intersection of computational complexity and quantum mechanics. The first section addresses the problem of simulating quantum mechanics on a classical computer. While exactly simulating quantum mechanics is NP hard, in this section we develop and approximate variational method to simulate quantum systems at finite temperature. The second section develops a "randomized benchmarking" method for verifying the gates of a quantum computer, a challenging task as the output of a quantum circuit is generically difficult to simulate. Finally, the third section deals with the ability of a quantum computer to simulate condensed matter systems; we study the ability of a variational quantum circuit to approximate the ground state of the mixed-spin Sherrington-Kirkpatrick spin-glass model.
Subject Added Entry-Topical Term  
Condensed matter physics.
Subject Added Entry-Topical Term  
Theoretical physics.
Subject Added Entry-Topical Term  
Quantum physics.
Index Term-Uncontrolled  
Topological insulators
Index Term-Uncontrolled  
Classical computer
Index Term-Uncontrolled  
Quantum computer
Index Term-Uncontrolled  
Computational complexity
Added Entry-Corporate Name  
University of Illinois at Urbana-Champaign Physics
Host Item Entry  
Dissertations Abstracts International. 85-02B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:641285

MARC

 008240221s2021        ulk                      00        kor
■001000016935235
■00520240214101908
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380106160
■035    ▼a(MiAaPQ)AAI30684796
■035    ▼a(MiAaPQ)httphdlhandlenet2142110429
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a530
■1001  ▼aClaes,  Jahan.
■24510▼aDisorder-Driven  Phase  Transitions  in  Weak,  Boundary-Obstructed,  and  Non-Hermitian  Topological  Insulators▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  Illinois  at  Urbana-Champaign.  ▼c2021
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2021
■300    ▼a1  online  resource(160  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-02,  Section:  B.
■500    ▼aAdvisor:  Vishveshwara,  Smitha;Hughes,  Taylor  L.  .
■5021  ▼aThesis  (Ph.D.)--University  of  Illinois  at  Urbana-Champaign,  2021.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■506    ▼aThis  item  must  not  be  added  to  any  third  party  search  indexes.
■520    ▼aThis  thesis  focuses  on  three  main  areas  in  quantum  physics.  The  bulk  of  this  thesis  addresses  the  effects  of  disorder  on  novel  classes  of  topological  insulators.  Topological  insulators  are  states  of  matter  that  display  properties-most  notably,  protected  anomalous  edge  states-that  are  robust  to  symmetry-preserving  disorder.  While  the  properties  of  "classical"  tenfold  way  topological  insulators  under  disorder  are  well-understood,  there  exist  other  topological  phases  whose  behavior  under  disorder  has  yet  to  be  characterized.  In  this  portion  of  the  thesis,  we  will  develop  real-space  methods  to  compute  weak,  boundary-obstructed,  and  non-Hermitian  topological  invariants,  establish  their  stability  at  weak  and  strong  disorder,  and  connect  these  disordered  topological  invariants  to  physical  signatures.The  remainder  of  the  thesis  contains  an  eclectic  mix  of  other  work  that  broadly  focuses  on  the  intersection  of  computational  complexity  and  quantum  mechanics.  The  first  section  addresses  the  problem  of  simulating  quantum  mechanics  on  a  classical  computer.  While  exactly  simulating  quantum  mechanics  is  NP  hard,  in  this  section  we  develop  and  approximate  variational  method  to  simulate  quantum  systems  at  finite  temperature.  The  second  section  develops  a  "randomized  benchmarking"  method  for  verifying  the  gates  of  a  quantum  computer,  a  challenging  task  as  the  output  of  a  quantum  circuit  is  generically  difficult  to  simulate.  Finally,  the  third  section  deals  with  the  ability  of  a  quantum  computer  to  simulate  condensed  matter  systems;  we  study  the  ability  of  a  variational  quantum  circuit  to  approximate  the  ground  state  of  the  mixed-spin  Sherrington-Kirkpatrick  spin-glass  model.
■590    ▼aSchool  code:  0090.
■650  4▼aCondensed  matter  physics.
■650  4▼aTheoretical  physics.
■650  4▼aQuantum  physics.
■653    ▼aTopological  insulators
■653    ▼aClassical  computer
■653    ▼aQuantum  computer
■653    ▼aComputational  complexity
■690    ▼a0611
■690    ▼a0753
■690    ▼a0599
■71020▼aUniversity  of  Illinois  at  Urbana-Champaign▼bPhysics.
■7730  ▼tDissertations  Abstracts  International▼g85-02B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0090
■791    ▼aPh.D.
■792    ▼a2021
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16935235▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0027102 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치