서브메뉴
검색
An Exergetic Comparison of Copper Extraction from Chalcopyrite Concentrates by Pyrometallurgy and Hydrometallurgy- [electronic resource]
An Exergetic Comparison of Copper Extraction from Chalcopyrite Concentrates by Pyrometallurgy and Hydrometallurgy- [electronic resource]
- Material Type
- 학위논문
- 0016932587
- Date and Time of Latest Transaction
- 20240214100518
- ISBN
- 9798379826628
- DDC
- 621
- Author
- Mather, Paul.
- Title/Author
- An Exergetic Comparison of Copper Extraction from Chalcopyrite Concentrates by Pyrometallurgy and Hydrometallurgy - [electronic resource]
- Publish Info
- [S.l.] : Purdue University., 2020
- Publish Info
- Ann Arbor : ProQuest Dissertations & Theses, 2020
- Material Info
- 1 online resource(250 p.)
- General Note
- Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
- General Note
- Advisor: Krane, Matthew J. M.
- 학위논문주기
- Thesis (Ph.D.)--Purdue University, 2020.
- Restrictions on Access Note
- This item must not be sold to any third party vendors.
- Abstracts/Etc
- 요약Copper is an essential metal in today's economy, due to its superior electrical and thermal conductivities, alloying properties, and chemical uses. Most copper is produced via mining and refining, and most copper is found in the earth's crust as chalcopyrite, CuFeS2. Typically, chalcopyrite is concentrated and fed to a high temperature pyrometallurgical process which produces 99.99% purity copper cathodes. Recently, Freeport-McMoRan Inc. has implemented a hydrometallurgical autoclave-leaching process that takes chalcopyrite concentrate and produces copper cathodes. It is imperative that these pyrometallurgical and hydrometallurgical processes be modeled and compared so that the extraction industry can best decide which technology to apply in the future. This work presents transient, reduced-order models for the comparison of the two processes using exergy balances. Exergy is typically thought of as the maximum work extractable from a system as it spontaneously reacts to the state of the surrounding environment; for extractive processes, it is also helpful to think of exergy as the minimum work required to effect a concentration, e.g. of copper. Exergy balances are thus similar to first law balances, but they comment on the location and magnitude of useful energy flows, instead of energy flows in general. For the baseline case, this work found that the pyrometallurgical process up to 99.5% copper anode stored 54% of the fed exergy in product, lost 20% of the fed exergy, and destroyed the remaining 26%. In contrast, the hydrometallurgical process up to 30 grams-per-liter copper pregnant-leach-solution stored 5% of the fed exergy in product, lost 9% of the fed exergy, and destroyed the remaining 86%. The effects of process variations are also looked at. It is recommended that this work be incorporated in whole-plant exergy balances to more precisely examine the tradeoffs between the pyrometallurgical and hydrometallurgical routes of copper extraction from chalcopyrite concentrates.
- Subject Added Entry-Topical Term
- Heat transfer.
- Subject Added Entry-Topical Term
- Furnaces.
- Subject Added Entry-Topical Term
- Copper.
- Subject Added Entry-Topical Term
- Particle size.
- Subject Added Entry-Topical Term
- Cooling.
- Subject Added Entry-Topical Term
- Bubbles.
- Subject Added Entry-Topical Term
- Sulfur content.
- Subject Added Entry-Topical Term
- Metallurgy.
- Subject Added Entry-Topical Term
- Materials science.
- Subject Added Entry-Topical Term
- Thermodynamics.
- Added Entry-Corporate Name
- Purdue University.
- Host Item Entry
- Dissertations Abstracts International. 85-01B.
- Host Item Entry
- Dissertation Abstract International
- Electronic Location and Access
- 로그인을 한후 보실 수 있는 자료입니다.
- 소장사항
-
202402 2024
- Control Number
- joongbu:641155
Detail Info.
- Reservation
- 캠퍼스간 도서대출
- 서가에 없는 책 신고
- My Folder