본문

서브메뉴

High-Resolution Data on Mobility, the Built Environment, and Physical Activity Embedding Smartphone GPS and Consumer Wearables Within a Cohort Study to Improve Environmental Epidemiology- [electronic resource]
High-Resolution Data on Mobility, the Built Environment, and Physical Activity Embedding Smartphone GPS and Consumer Wearables Within a Cohort Study to Improve Environmental Epidemiology- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016932113
International Standard Book Number  
9798379614454
Dewey Decimal Classification Number  
613
Main Entry-Personal Name  
Wilt, Grete E.
Publication, Distribution, etc. (Imprint  
[S.l.] : Harvard University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(168 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
General Note  
Advisor: James, Peter.
Dissertation Note  
Thesis (Ph.D.)--Harvard University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약The ubiquitous nature of smartphones and wearable devices create novel opportunities for epidemiological exposure assessment and measurement error correction within the context of the built and natural environments. Since the foundations of the field, environmental epidemiologists have sought to establish methods to quantify and characterize environmental exposures, and to determine appropriate spatial and temporal scale. This dissertation set out to address the following gaps in the literature: 1) quantification of exposure differences between residential and mobility-based greenness; 2) explore momentary associations between greenness and physical activity through smartphone and wearable device data collection; 3) examine associations of walkability and physical activity at the minute level using GPS data; and 4) understand nondifferential misclassification of walkability exposure and implications for regression calibration on the association between residential walkability and physical activity.The first study (Chapter 2), addressing research gap 1, found residential-based distance buffer estimates of greenness are higher and more variable than mobility-based metrics. These findings contribute to discussions surrounding the choice of an optimal spatial scale for personal greenness exposure assessment. The second study (Chapter 3) sought to undertake the second research gap of momentary associations by utilizing objective physical activity data at fine temporal and spatial scales to present novel estimates of the association between mobility-based greenness and step count. Contrary to our hypotheses, higher greenness exposure was associated non-linearly with lower mean steps per minute after adjusting for confounders. We observed statistically significant effect modification by Census region and season.The third study (Chapter 4) targeted research gap 3 and took a similar approach to the previous chapter. We utilized comprehensive mobility data at fine temporal and spatial scales to present novel estimates on the real time association between walkability and physical activity. We found higher walkability exposure was associated with overall higher mean steps per minute. Associations were non-linear in nature. These findings contribute to discussions surrounding adapting the built environment to increase physical activity, resulting in the potential for improved health outcomes downstream.Lastly, the fourth study (Chapter 5) set out to assess the impact of measurement error found in residential-based walkability measures. We used mobility-based estimates to correct error-prone residence based estimates and then used these error corrected exposures to correct associations between walkability and self-reported physical activity for the error due to the use of residence-based exposures. This chapter highlights residential-based estimates of walkability slightly underestimate associations between walkability and physical activity. These findings highlight the impact of exposure misclassification on epidemiological studies of the built environment and physical activity. GPS data present a feasible solution to correct residential environmental exposures moving forward.This dissertation contributes to the literature at the intersection of epidemiology, environmental health, and geography on human movement, the built environment, and physical activity. We build off an established U.S.-based nationwide prospective cohort through an internal mobile health (mHealth) substudy with momentary GPS and wearable data for exposure and outcome and in-depth information on individual and area-level covariates. By combining approaches from the fields of epidemiology and geography this mHealth dissertation explores improved exposure assessment using GPS, real-time mechanisms of association utilizing GPS data and integrating error corrections into large preexisting cohorts.
Subject Added Entry-Topical Term  
Environmental health.
Subject Added Entry-Topical Term  
Epidemiology.
Subject Added Entry-Topical Term  
Geographic information science.
Index Term-Uncontrolled  
Generalized Additive Mixed Models
Index Term-Uncontrolled  
GPS
Index Term-Uncontrolled  
Measurement error
Index Term-Uncontrolled  
Physical activity
Index Term-Uncontrolled  
Smartphones
Index Term-Uncontrolled  
Wearables
Added Entry-Corporate Name  
Harvard University Population Health Sciences
Host Item Entry  
Dissertations Abstracts International. 84-12B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:641125

MARC

 008240221s2023        ulk                      00        kor
■001000016932113
■00520240214100414
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379614454
■035    ▼a(MiAaPQ)AAI30486803
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a613
■1001  ▼aWilt,  Grete  E.▼0(orcid)0000-0002-7145-6975
■24510▼aHigh-Resolution  Data  on  Mobility,  the  Built  Environment,  and  Physical  Activity  Embedding  Smartphone  GPS  and  Consumer  Wearables  Within  a  Cohort  Study  to  Improve  Environmental  Epidemiology▼h[electronic  resource]
■260    ▼a[S.l.]▼bHarvard  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(168  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  84-12,  Section:  B.
■500    ▼aAdvisor:  James,  Peter.
■5021  ▼aThesis  (Ph.D.)--Harvard  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aThe  ubiquitous  nature  of  smartphones  and  wearable  devices  create  novel  opportunities  for  epidemiological  exposure  assessment  and  measurement  error  correction  within  the  context  of  the  built  and  natural  environments.  Since  the  foundations  of  the  field,  environmental  epidemiologists  have  sought  to  establish  methods  to  quantify  and  characterize  environmental  exposures,  and  to  determine  appropriate  spatial  and  temporal  scale.  This  dissertation  set  out  to  address  the  following  gaps  in  the  literature:  1)  quantification  of  exposure  differences  between  residential  and  mobility-based  greenness;  2)  explore  momentary  associations  between  greenness  and  physical  activity  through  smartphone  and  wearable  device  data  collection;  3)  examine  associations  of  walkability  and  physical  activity  at  the  minute  level  using  GPS  data;  and  4)  understand  nondifferential  misclassification  of  walkability  exposure  and  implications  for  regression  calibration  on  the  association  between  residential  walkability  and  physical  activity.The  first  study  (Chapter  2),  addressing  research  gap  1,  found  residential-based  distance  buffer  estimates  of  greenness  are  higher  and  more  variable  than  mobility-based  metrics.  These  findings  contribute  to  discussions  surrounding  the  choice  of  an  optimal  spatial  scale  for  personal  greenness  exposure  assessment.  The  second  study  (Chapter  3)  sought  to  undertake  the  second  research  gap  of  momentary  associations  by  utilizing  objective  physical  activity  data  at  fine  temporal  and  spatial  scales  to  present  novel  estimates  of  the  association  between  mobility-based  greenness  and  step  count.  Contrary  to  our  hypotheses,  higher  greenness  exposure  was  associated  non-linearly  with  lower  mean  steps  per  minute  after  adjusting  for  confounders.  We  observed  statistically  significant  effect  modification  by  Census  region  and  season.The  third  study  (Chapter  4)  targeted  research  gap  3  and  took  a  similar  approach  to  the  previous  chapter.  We  utilized  comprehensive  mobility  data  at  fine  temporal  and  spatial  scales  to  present  novel  estimates  on  the  real  time  association  between  walkability  and  physical  activity.  We  found  higher  walkability  exposure  was  associated  with  overall  higher  mean  steps  per  minute.  Associations  were  non-linear  in  nature.  These  findings  contribute  to  discussions  surrounding  adapting  the  built  environment  to  increase  physical  activity,  resulting  in  the  potential  for  improved  health  outcomes  downstream.Lastly,  the  fourth  study  (Chapter  5)  set  out  to  assess  the  impact  of  measurement  error  found  in  residential-based  walkability  measures.  We  used  mobility-based  estimates  to  correct  error-prone  residence  based  estimates  and  then  used  these  error  corrected  exposures  to  correct  associations  between  walkability  and  self-reported  physical  activity  for  the  error  due  to  the  use  of  residence-based  exposures.  This  chapter  highlights  residential-based  estimates  of  walkability  slightly  underestimate  associations  between  walkability  and  physical  activity.  These  findings  highlight  the  impact  of  exposure  misclassification  on  epidemiological  studies  of  the  built  environment  and  physical  activity.  GPS  data  present  a  feasible  solution  to  correct  residential  environmental  exposures  moving  forward.This  dissertation  contributes  to  the  literature  at  the  intersection  of  epidemiology,  environmental  health,  and  geography  on  human  movement,  the  built  environment,  and  physical  activity.  We  build  off  an  established  U.S.-based  nationwide  prospective  cohort  through  an  internal  mobile  health  (mHealth)  substudy  with  momentary  GPS  and  wearable  data  for  exposure  and  outcome  and  in-depth  information  on  individual  and  area-level  covariates.  By  combining  approaches  from  the  fields  of  epidemiology  and  geography  this  mHealth  dissertation  explores  improved  exposure  assessment  using  GPS,  real-time  mechanisms  of  association  utilizing  GPS  data  and  integrating  error  corrections  into  large  preexisting  cohorts.
■590    ▼aSchool  code:  0084.
■650  4▼aEnvironmental  health.
■650  4▼aEpidemiology.
■650  4▼aGeographic  information  science.
■653    ▼aGeneralized  Additive  Mixed  Models
■653    ▼aGPS
■653    ▼aMeasurement  error
■653    ▼aPhysical  activity
■653    ▼aSmartphones
■653    ▼aWearables
■690    ▼a0470
■690    ▼a0766
■690    ▼a0370
■71020▼aHarvard  University▼bPopulation  Health  Sciences.
■7730  ▼tDissertations  Abstracts  International▼g84-12B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0084
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16932113▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    detalle info

    • Reserva
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Mi carpeta
    Material
    número de libro número de llamada Ubicación estado Prestar info
    TQ0027039 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Las reservas están disponibles en el libro de préstamos. Para hacer reservaciones, haga clic en el botón de reserva

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치