본문

서브메뉴

Mechanophenotyping Actin Networks in Minimal Cell Models- [electronic resource]
Mechanophenotyping Actin Networks in Minimal Cell Models- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016933684
International Standard Book Number  
9798379566500
Dewey Decimal Classification Number  
620.8
Main Entry-Personal Name  
Wubshet, Nadab Habtamu.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(214 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
General Note  
Advisor: Liu, Allen P.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Restrictions on Access Note  
This item must not be added to any third party search indexes.
Summary, Etc.  
요약Actin, a highly conserved and abundant protein, constructs a fibrous matrix via actin binding proteins (ABPs) equipping the cell to sustain, exert, and sense forces. Actin assembly plays an important role in directed cell migration during wound healing, cancer metastasis, immune response, and embryonic development. Although actin is a well-studied protein, owing to inherent complexity of the cell, significant gaps remain in understanding how different actin architectures transform, interact, and behave to endow the mechanical behaviors of the cell. In my thesis, I investigate how cells mechanically respond to the absence of native physical forces, how ABPs cooperate and compete to construct actin networks, and how different actin architectures dictate cellular mechanophenotypes. The bulk of my thesis work leverages bottom-up construction of minimal cell models to decouple actin networks from the complex cytoplasm milieu. In Chapter 3, we study mechanical response of human osteoblasts to simulated microgravity. Using a home-built random positioning machine to generate simulated microgravity, we find that actin networks become highly disorganized leading to less spread and more rounded cells. Furthermore, cells subjected to microgravity become significantly softer. These findings reveal that microgravity influences osteoblast cell mechanics through actin disassembly. In Chapter 4, we introduce bottom-up reconstitution of actin networks in a minimal cell to decouple actin networks from the rest of the cytoplasm. Here, we reverse engineer a minimal cell model using giant unilamellar vesicle (GUV) encapsulating actin networks. We study architectural phenotypes assembled by fascin and Arp2/3 complex. While fascin-bundled actin forms membrane protrusive structures, membrane-associated Arp2/3 complex assembles a uniform cortical dendritic shell. When co-encapsulated, we hypothesize that fascin and Arp2/3 cooperates/competes in a concentration dependent manner. Under this condition, we find that fascin-bundled membrane protrusions are reduced due to the branching effect of Arp2/3 complex that shortens filaments. Our results provide support that ABPs compete to generate diverse actin structures to meet the needs of a cell. In Chapter 5, I electrically deform different actin network-encapsulating GUVs to study differential cell mechanics. I discover that increasing concentrations of filamentous actin dampens GUV deformability. Furthermore, GUVs with alpha-actinin crosslinked actin networks and actin cortex both exhibit even larger dampening of electrodeformability. Our results highlight the significance of actin network architecture in governing cellular mechanics. In Chapter 6, I explore how actin cortex and bundles rearrange in response to loading exerted by micropipette aspiration. Interestingly, we find that protrusive actin bundles that are otherwise randomly oriented in a GUV lumen collapse and align along the axis of the micropipette. When uniform cortex-GUVs are aspirated, bleb-like cortex-free membrane is aspirated in the micropipette. These results reveal distinct responses in the rearrangement of actin networks subjected to physical forces. In summary, my dissertation characterizes actin network mechanics in cells and in minimal cell models and addresses how different ABPs cooperate and compete to assemble actin networks with architectures that in turns influence their mechanical behaviors and their responses to load. I believe that these findings improve our understanding of how precisely actin networks endow the mechanics of the cell using a low complexity cell-like environment.
Subject Added Entry-Topical Term  
Biomechanics.
Subject Added Entry-Topical Term  
Biophysics.
Subject Added Entry-Topical Term  
Mechanical engineering.
Subject Added Entry-Topical Term  
Cellular biology.
Index Term-Uncontrolled  
Actin
Index Term-Uncontrolled  
Actin binding proteins
Index Term-Uncontrolled  
Giant unilamellar vesicles
Index Term-Uncontrolled  
Electrodeformation
Index Term-Uncontrolled  
Micropipette aspiration
Index Term-Uncontrolled  
Minimal cells
Added Entry-Corporate Name  
University of Michigan Mechanical Engineering
Host Item Entry  
Dissertations Abstracts International. 84-12B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:641017

MARC

 008240220s2023        ulk                      00        kor
■001000016933684
■00520240214101323
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379566500
■035    ▼a(MiAaPQ)AAI30548539
■035    ▼a(MiAaPQ)umichrackham004864
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a620.8
■1001  ▼aWubshet,  Nadab  Habtamu.
■24510▼aMechanophenotyping  Actin  Networks  in  Minimal  Cell  Models▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(214  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  84-12,  Section:  B.
■500    ▼aAdvisor:  Liu,  Allen  P.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■506    ▼aThis  item  must  not  be  added  to  any  third  party  search  indexes.
■520    ▼aActin,  a  highly  conserved  and  abundant  protein,  constructs  a  fibrous  matrix  via  actin  binding  proteins  (ABPs)  equipping  the  cell  to  sustain,  exert,  and  sense  forces.    Actin  assembly  plays  an  important  role  in  directed  cell  migration  during  wound  healing,  cancer  metastasis,  immune  response,  and  embryonic  development.  Although  actin  is  a  well-studied  protein,  owing  to  inherent  complexity  of  the  cell,  significant  gaps  remain  in  understanding  how  different  actin  architectures  transform,  interact,  and  behave  to  endow  the  mechanical  behaviors  of  the  cell.  In  my  thesis,  I  investigate  how  cells  mechanically  respond  to  the  absence  of  native  physical  forces,  how  ABPs  cooperate  and  compete  to  construct  actin  networks,  and  how  different  actin  architectures  dictate  cellular  mechanophenotypes.  The  bulk  of  my  thesis  work  leverages  bottom-up  construction  of  minimal  cell  models  to  decouple  actin  networks  from  the  complex  cytoplasm  milieu.      In  Chapter  3,  we  study  mechanical  response  of  human  osteoblasts  to  simulated  microgravity.  Using  a  home-built  random  positioning  machine  to  generate  simulated  microgravity,  we  find  that  actin  networks  become  highly  disorganized  leading  to  less  spread  and  more  rounded  cells.  Furthermore,  cells  subjected  to  microgravity  become  significantly  softer.  These  findings  reveal  that  microgravity  influences  osteoblast  cell  mechanics  through  actin  disassembly.      In  Chapter  4,  we  introduce  bottom-up  reconstitution  of  actin  networks  in  a  minimal  cell  to  decouple  actin  networks  from  the  rest  of  the  cytoplasm.  Here,  we  reverse  engineer  a  minimal  cell  model  using  giant  unilamellar  vesicle  (GUV)  encapsulating  actin  networks.  We  study  architectural  phenotypes  assembled  by  fascin  and  Arp2/3  complex.  While  fascin-bundled  actin  forms  membrane  protrusive  structures,  membrane-associated  Arp2/3  complex  assembles  a  uniform  cortical  dendritic  shell.  When  co-encapsulated,  we  hypothesize  that  fascin  and  Arp2/3  cooperates/competes  in  a  concentration  dependent  manner.  Under  this  condition,  we  find  that  fascin-bundled  membrane  protrusions  are  reduced  due  to  the  branching  effect  of  Arp2/3  complex  that  shortens  filaments.  Our  results  provide  support  that  ABPs  compete  to  generate  diverse  actin  structures  to  meet  the  needs  of  a  cell.    In  Chapter  5,  I  electrically  deform  different  actin  network-encapsulating  GUVs  to  study  differential  cell  mechanics.    I  discover  that  increasing  concentrations  of  filamentous  actin  dampens  GUV  deformability.  Furthermore,  GUVs  with  alpha-actinin  crosslinked  actin  networks  and  actin  cortex  both  exhibit  even  larger  dampening  of  electrodeformability.  Our  results  highlight  the  significance  of  actin  network  architecture  in  governing  cellular  mechanics.  In  Chapter  6,  I  explore  how  actin  cortex  and  bundles  rearrange  in  response  to  loading  exerted  by  micropipette  aspiration.  Interestingly,  we  find  that  protrusive  actin  bundles  that  are  otherwise  randomly  oriented  in  a  GUV  lumen  collapse  and  align  along  the  axis  of  the  micropipette.  When  uniform  cortex-GUVs  are  aspirated,  bleb-like  cortex-free  membrane  is  aspirated  in  the  micropipette.  These  results  reveal  distinct  responses  in  the  rearrangement  of  actin  networks  subjected  to  physical  forces.      In  summary,  my  dissertation  characterizes  actin  network  mechanics  in  cells  and  in  minimal  cell  models  and  addresses  how  different  ABPs  cooperate  and  compete  to  assemble  actin  networks  with  architectures  that  in  turns  influence  their  mechanical  behaviors  and  their  responses  to  load.  I  believe  that  these  findings  improve  our  understanding  of  how  precisely  actin  networks  endow  the  mechanics  of  the  cell  using  a  low  complexity  cell-like  environment.
■590    ▼aSchool  code:  0127.
■650  4▼aBiomechanics.
■650  4▼aBiophysics.
■650  4▼aMechanical  engineering.
■650  4▼aCellular  biology.
■653    ▼aActin
■653    ▼aActin  binding  proteins
■653    ▼aGiant  unilamellar  vesicles
■653    ▼aElectrodeformation
■653    ▼aMicropipette  aspiration
■653    ▼aMinimal  cells
■690    ▼a0548
■690    ▼a0786
■690    ▼a0648
■690    ▼a0379
■71020▼aUniversity  of  Michigan▼bMechanical  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g84-12B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16933684▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Buch Status

    • Reservierung
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Meine Mappe
    Sammlungen
    Registrierungsnummer callnumber Standort Verkehr Status Verkehr Info
    TQ0026931 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Kredite nur für Ihre Daten gebucht werden. Wenn Sie buchen möchten Reservierungen, klicken Sie auf den Button.

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치