본문

서브메뉴

Robust and Scalable Projection-Based Reduced-Order Models for Simulations of Reacting Flows- [electronic resource]
Robust and Scalable Projection-Based Reduced-Order Models for Simulations of Reacting Flows- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016933673
International Standard Book Number  
9798379565619
Dewey Decimal Classification Number  
004
Main Entry-Personal Name  
Wentland, Christopher R.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(245 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
General Note  
Advisor: Duraisamy, Karthik;Huang, Cheng.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Restrictions on Access Note  
This item must not be added to any third party search indexes.
Summary, Etc.  
요약This thesis investigates the development and application of projection-based reduced-order models (PROMs) to mitigate the exorbitant computational cost of high-fidelity numerical simulations of complex systems. Traditionally, PROMs operate by learning a low-dimensional representation of the system state from a small amount of high-fidelity simulation data, projecting the governing equations onto a low-dimensional subspace, and evolving the resulting system on the low-dimensional manifold inexpensively. For advection-dominated and highly non-linear flows, classical PROMs are found to be deficient in reliably generating robust and accurate predictions of flows featuring multi-scale and multi-physics phenomena. Further, PROMs of non-linear systems require hyper-reduction methods to achieve significant computational cost savings, and such approaches have yet to be rigorously investigated in stiff and chaotic flow problems. The methods developed in this thesis are motivated by and applied to complex reacting flows, with a particular emphasis on rocket combustion. This work evolves from the recent model-form preserving least-squares with variable transformation (MP-LSVT) method, which derives the ROM using a least-squares procedure, and simulates the dynamics with respect to an alternative state representation. This approach exhibits greatly improved accuracy and stability over classical PROM methods for reacting flow simulations. These techniques are then applied to a number of challenging multi-scale and reacting flow systems.First, an open-source framework for implementing novel ROM approaches for 1D reacting flows, named the Prototyping Environment for Reacting Flow Order Reduction Methods (PERFORM), is outlined. This package is used to conduct a critical examination of several novel neural network ROM approaches is conducted for a model premixed flame case. This approach exhibits utility in enabling accurate representations of flows characterized by sharp gradients and propagating waves. Further, non-intrusive neural network ROM approaches are shown to greatly outperform comparable classical intrusive PROM methods. However, analysis of the cost of training these neural network models reveals that they are hardly an efficient solution compared to equivalent linear approximations.Scalable hyper-reduced PROMs are developed within a massively parallel compressible reacting flow solver, and demonstrated for a 2D transonic flow over an open cavity, a 3D single-element rocket combustor, and a 3D nine-element rocket combustor. The effects of the sample mesh and hyper-reduction approximation dimension on PROM performance is probed at length. Recent algorithms for selecting sample points are shown to generate accurate models, while some methods used in the classical PROM literature are shown to generate unstable solutions. Over three orders of magnitude computational costs savings, while retaining simulation accuracy are realized. Further, the nine-element rocket combustor experiment represents the largest and most physically-complex system investigated to date, involving extreme stiffness and nearly 250 million degrees of freedom. However, the ultimate goal of PROMs is truly generalizable, predictive models. To this end, analyses are conducting for a recent adaptive PROM approach, revealing that future-state and parametric predictions are achievable for very long time horizons.Finally, best practices for the development and application of PROMs are documented. These guidelines will hopefully inform future PROM practitioners and help mitigate costly trial-and-error efforts. In summary, this work shows that novel projection-based reduced-order models offer an attractive means to leverage an ever-growing ecosystem of numerical and experimental data to generate accurate and low-cost solutions.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Aerospace engineering.
Index Term-Uncontrolled  
Reduced-order models
Index Term-Uncontrolled  
Rocket combustion
Index Term-Uncontrolled  
Computational fluid dynamics
Index Term-Uncontrolled  
Machine learning
Added Entry-Corporate Name  
University of Michigan Aerospace Engineering
Host Item Entry  
Dissertations Abstracts International. 84-12B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:641015

MARC

 008240220s2023        ulk                      00        kor
■001000016933673
■00520240214101322
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379565619
■035    ▼a(MiAaPQ)AAI30548521
■035    ▼a(MiAaPQ)umichrackham004761
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a004
■1001  ▼aWentland,  Christopher  R.
■24510▼aRobust  and  Scalable  Projection-Based  Reduced-Order  Models  for  Simulations  of  Reacting  Flows▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(245  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  84-12,  Section:  B.
■500    ▼aAdvisor:  Duraisamy,  Karthik;Huang,  Cheng.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■506    ▼aThis  item  must  not  be  added  to  any  third  party  search  indexes.
■520    ▼aThis  thesis  investigates  the  development  and  application  of  projection-based  reduced-order  models  (PROMs)  to  mitigate  the  exorbitant  computational  cost  of  high-fidelity  numerical  simulations  of  complex  systems.  Traditionally,  PROMs  operate  by  learning  a  low-dimensional  representation  of  the  system  state  from  a  small  amount  of  high-fidelity  simulation  data,  projecting  the  governing  equations  onto  a  low-dimensional  subspace,  and  evolving  the  resulting  system  on  the  low-dimensional  manifold  inexpensively.  For  advection-dominated  and  highly  non-linear  flows,  classical  PROMs  are  found  to  be  deficient  in  reliably  generating  robust  and  accurate  predictions  of  flows  featuring  multi-scale  and  multi-physics  phenomena.  Further,  PROMs  of  non-linear  systems  require  hyper-reduction  methods  to  achieve  significant  computational  cost  savings,  and  such  approaches  have  yet  to  be  rigorously  investigated  in  stiff  and  chaotic  flow  problems.  The  methods  developed  in  this  thesis  are  motivated  by  and  applied  to  complex  reacting  flows,  with  a  particular  emphasis  on  rocket  combustion.  This  work  evolves  from  the  recent  model-form  preserving  least-squares  with  variable  transformation  (MP-LSVT)  method,  which  derives  the  ROM  using  a  least-squares  procedure,  and  simulates  the  dynamics  with  respect  to  an  alternative  state  representation.  This  approach  exhibits  greatly  improved  accuracy  and  stability  over  classical  PROM  methods  for  reacting  flow  simulations.  These  techniques  are  then  applied  to  a  number  of  challenging  multi-scale  and  reacting  flow  systems.First,  an  open-source  framework  for  implementing  novel  ROM  approaches  for  1D  reacting  flows,  named  the  Prototyping  Environment  for  Reacting  Flow  Order  Reduction  Methods  (PERFORM),  is  outlined.  This  package  is  used  to  conduct  a  critical  examination  of  several  novel  neural  network  ROM  approaches  is  conducted  for  a  model  premixed  flame  case.  This  approach  exhibits  utility  in  enabling  accurate  representations  of  flows  characterized  by  sharp  gradients  and  propagating  waves.  Further,  non-intrusive  neural  network  ROM  approaches  are  shown  to  greatly  outperform  comparable  classical  intrusive  PROM  methods.  However,  analysis  of  the  cost  of  training  these  neural  network  models  reveals  that  they  are  hardly  an  efficient  solution  compared  to  equivalent  linear  approximations.Scalable  hyper-reduced  PROMs  are  developed  within  a  massively  parallel  compressible  reacting  flow  solver,  and  demonstrated  for  a  2D  transonic  flow  over  an  open  cavity,  a  3D  single-element  rocket  combustor,  and  a  3D  nine-element  rocket  combustor.  The  effects  of  the  sample  mesh  and  hyper-reduction  approximation  dimension  on  PROM  performance  is  probed  at  length.  Recent  algorithms  for  selecting  sample  points  are  shown  to  generate  accurate  models,  while  some  methods  used  in  the  classical  PROM  literature  are  shown  to  generate  unstable  solutions.  Over  three  orders  of  magnitude  computational  costs  savings,  while  retaining  simulation  accuracy  are  realized.  Further,  the  nine-element  rocket  combustor  experiment  represents  the  largest  and  most  physically-complex  system  investigated  to  date,  involving  extreme  stiffness  and  nearly  250  million  degrees  of  freedom.  However,  the  ultimate  goal  of  PROMs  is  truly  generalizable,  predictive  models.  To  this  end,  analyses  are  conducting  for  a  recent  adaptive  PROM  approach,  revealing  that  future-state  and  parametric  predictions  are  achievable  for  very  long  time  horizons.Finally,  best  practices  for  the  development  and  application  of  PROMs  are  documented.  These  guidelines  will  hopefully  inform  future  PROM  practitioners  and  help  mitigate  costly  trial-and-error  efforts.  In  summary,  this  work  shows  that  novel  projection-based  reduced-order  models  offer  an  attractive  means  to  leverage  an  ever-growing  ecosystem  of  numerical  and  experimental  data  to  generate  accurate  and  low-cost  solutions.
■590    ▼aSchool  code:  0127.
■650  4▼aComputer  science.
■650  4▼aAerospace  engineering.
■653    ▼aReduced-order  models
■653    ▼aRocket  combustion
■653    ▼aComputational  fluid  dynamics
■653    ▼aMachine  learning
■690    ▼a0538
■690    ▼a0984
■71020▼aUniversity  of  Michigan▼bAerospace  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g84-12B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16933673▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    ค้นหาข้อมูลรายละเอียด

    • จองห้องพัก
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • โฟลเดอร์ของฉัน
    วัสดุ
    Reg No. Call No. ตำแหน่งที่ตั้ง สถานะ ยืมข้อมูล
    TQ0026929 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * จองมีอยู่ในหนังสือยืม เพื่อให้การสำรองที่นั่งคลิกที่ปุ่มจองห้องพัก

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치