본문

서브메뉴

Modeling and Predicting Heavy-Duty Vehicle Nitrogen Oxide Emissions Using Deep Learning- [electronic resource]
Modeling and Predicting Heavy-Duty Vehicle Nitrogen Oxide Emissions Using Deep Learning- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016933666
International Standard Book Number  
9798379565473
Dewey Decimal Classification Number  
621
Main Entry-Personal Name  
Pillai, Rinav Raveendran.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(213 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
General Note  
Advisor: Boehman, Andre L.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Restrictions on Access Note  
This item must not be added to any third party search indexes.
Summary, Etc.  
요약Heavy-duty vehicles are powered by diesel engines that emit significant amounts of NOx emissions which are detrimental to human health and the environment. As emissions regulations for transportation become stricter, it has become increasingly important to develop accurate NOx emissions models for heavy-duty vehicles. However, estimation of transient NOx emissions is challenging due to its highly dynamic nature. Traditional thermophysical, chemical and semi-empirical NOx models require large number of assumptions and consume high quantities of computational time and cost. Therefore, this research investigates a multi-dimensional data driven approach to estimate NOx emissions in heavy-duty diesel vehicles using machine learning techniques.With increasing quantities of data being collected through laboratory and on-road compliance tests, a deep learning neural network (DNN) method to predicting NOx emissions at representative engine and aftertreatment operating conditions was explored in this thesis. DNN models were developed for estimation of engine-out and tailpipe NOx emissions using physics inspired engine and exhaust aftertreatment variables readily available from On-Board Diagnostics (OBD) of heavy-duty vehicles. A 6.7L engine (different model years) from a heavy-duty bus was tested on an engine and chassis dynamometer using test cycles representative of in-use operation, to develop a comprehensive dataset for training the DNN models. Results from testing on unseen dynamometer test data showed high prediction accuracy for engine-out (R2 = 0.99 and 0.97) and tailpipe (R2 = 0.99 and 0.93) NOx emissions on engine and chassis dynamometer datasets respectively.Variable importance studies conducted to determine significant engine and aftertreatment inputs that affect DNN NOx prediction demonstrated high prediction accuracy (R2 = 0.92 to 0.95), while utilizing minimal significant inputs. Additionally, the model was shown to successfully detect 60% higher tailpipe NOx emissions on a similar 6.7L engine fitted with a faulty selective catalytic reduction (SCR) system. On-road testing was conducted on a conventional heavy-duty diesel bus operating on winter and summer biodiesel fuels using an OBD logger and a Horiba Smart Emissions Measurement System (SEMS) to develop a dataset that included variables such as road grade and ambient conditions, the effects of which are not necessarily captured in the controlled environment of laboratory testing.DNN tailpipe NOx models subsequently developed using on-road datasets showed high accuracy (R2 = 0.97) on unseen on-road test data collected using SEMS. In addition, the effect of different fuel types on DNN tailpipe NOx predictions was explored utilizing fuel type as a categorical input to the DNN model. The results from the study showed good estimation of NOx emissions using multiple fuels (R2 = 0.97). A Feed-Forward DNN (FF-DNN) model with a single time shifted NOx feature was proposed which demonstrated comparable accuracy with time series forecasting DNN models in the literature, with reduced computational time for model training. A potential macro-scale anomaly detection tool was also developed by training a DNN classification model using on-road datasets.This dissertation demonstrates that accurate data-driven NOx emissions models can be developed using DNNs without the need for physical or chemical equations. Moreover, the potential application of DNN models to NOx control and aftertreatment operation, fault detection in SCR systems and supplementing in-use heavy-duty vehicle NOx emissions inventories in understanding the potential for future NOx emissions regulations has been explored through these detailed studies.
Subject Added Entry-Topical Term  
Mechanical engineering.
Index Term-Uncontrolled  
Modelling nitrogen oxide emissions
Index Term-Uncontrolled  
Deep learning
Index Term-Uncontrolled  
Nitrogen oxide emissions
Index Term-Uncontrolled  
Data-driven modelling
Index Term-Uncontrolled  
On-road vehicle testing
Index Term-Uncontrolled  
Deep learning neural networks
Index Term-Uncontrolled  
Emissions modelling
Added Entry-Corporate Name  
University of Michigan Mechanical Engineering
Host Item Entry  
Dissertations Abstracts International. 84-12B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:641013

MARC

 008240220s2023        ulk                      00        kor
■001000016933666
■00520240214101320
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379565473
■035    ▼a(MiAaPQ)AAI30548513
■035    ▼a(MiAaPQ)umichrackham004882
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a621
■1001  ▼aPillai,  Rinav  Raveendran.
■24510▼aModeling  and  Predicting  Heavy-Duty  Vehicle  Nitrogen  Oxide  Emissions  Using  Deep  Learning▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(213  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  84-12,  Section:  B.
■500    ▼aAdvisor:  Boehman,  Andre  L.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■506    ▼aThis  item  must  not  be  added  to  any  third  party  search  indexes.
■520    ▼aHeavy-duty  vehicles  are  powered  by  diesel  engines  that  emit  significant  amounts  of  NOx  emissions  which  are  detrimental  to  human  health  and  the  environment.  As  emissions  regulations  for  transportation  become  stricter,  it  has  become  increasingly  important  to  develop  accurate  NOx  emissions  models  for  heavy-duty  vehicles.  However,  estimation  of  transient  NOx  emissions  is  challenging  due  to  its  highly  dynamic  nature.  Traditional  thermophysical,  chemical  and  semi-empirical  NOx  models  require  large  number  of  assumptions  and  consume  high  quantities  of  computational  time  and  cost.  Therefore,  this  research  investigates  a  multi-dimensional  data  driven  approach  to  estimate  NOx  emissions  in  heavy-duty  diesel  vehicles  using  machine  learning  techniques.With  increasing  quantities  of  data  being  collected  through  laboratory  and  on-road  compliance  tests,  a  deep  learning  neural  network  (DNN)  method  to  predicting  NOx  emissions  at  representative  engine  and  aftertreatment  operating  conditions  was  explored  in  this  thesis.  DNN  models  were  developed  for  estimation  of  engine-out  and  tailpipe  NOx  emissions  using  physics  inspired  engine  and  exhaust  aftertreatment  variables  readily  available  from  On-Board  Diagnostics  (OBD)  of  heavy-duty  vehicles.  A  6.7L  engine  (different  model  years)  from  a  heavy-duty  bus  was  tested  on  an  engine  and  chassis  dynamometer  using  test  cycles  representative  of  in-use  operation,  to  develop  a  comprehensive  dataset  for  training  the  DNN  models.  Results  from  testing  on  unseen  dynamometer  test  data  showed  high  prediction  accuracy  for  engine-out  (R2  =  0.99  and  0.97)  and  tailpipe  (R2  =  0.99  and  0.93)  NOx  emissions  on  engine  and  chassis  dynamometer  datasets  respectively.Variable  importance  studies  conducted  to  determine  significant  engine  and  aftertreatment  inputs  that  affect  DNN  NOx  prediction  demonstrated  high  prediction  accuracy  (R2  =  0.92  to  0.95),  while  utilizing  minimal  significant  inputs.  Additionally,  the  model  was  shown  to  successfully  detect  60%  higher  tailpipe  NOx  emissions  on  a  similar  6.7L  engine  fitted  with  a  faulty  selective  catalytic  reduction  (SCR)  system.  On-road  testing  was  conducted  on  a  conventional  heavy-duty  diesel  bus  operating  on  winter  and  summer  biodiesel  fuels  using  an  OBD  logger  and  a  Horiba  Smart  Emissions  Measurement  System  (SEMS)  to  develop  a  dataset  that  included  variables  such  as  road  grade  and  ambient  conditions,  the  effects  of  which  are  not  necessarily  captured  in  the  controlled  environment  of  laboratory  testing.DNN  tailpipe  NOx  models  subsequently  developed  using  on-road  datasets  showed  high  accuracy  (R2  =  0.97)  on  unseen  on-road  test  data  collected  using  SEMS.  In  addition,  the  effect  of  different  fuel  types  on  DNN  tailpipe  NOx  predictions  was  explored  utilizing  fuel  type  as  a  categorical  input  to  the  DNN  model.  The  results  from  the  study  showed  good  estimation  of  NOx  emissions  using  multiple  fuels  (R2  =  0.97).  A  Feed-Forward  DNN  (FF-DNN)  model  with  a  single  time  shifted  NOx  feature  was  proposed  which  demonstrated  comparable  accuracy  with  time  series  forecasting  DNN  models  in  the  literature,  with  reduced  computational  time  for  model  training.  A  potential  macro-scale  anomaly  detection  tool  was  also  developed  by  training  a  DNN  classification  model  using  on-road  datasets.This  dissertation  demonstrates  that  accurate  data-driven  NOx  emissions  models  can  be  developed  using  DNNs  without  the  need  for  physical  or  chemical  equations.  Moreover,  the  potential  application  of  DNN  models  to  NOx  control  and  aftertreatment  operation,  fault  detection  in  SCR  systems  and  supplementing  in-use  heavy-duty  vehicle  NOx  emissions  inventories  in  understanding  the  potential  for  future  NOx  emissions  regulations  has  been  explored  through  these  detailed  studies.
■590    ▼aSchool  code:  0127.
■650  4▼aMechanical  engineering.
■653    ▼aModelling  nitrogen  oxide  emissions
■653    ▼aDeep  learning
■653    ▼aNitrogen  oxide  emissions
■653    ▼aData-driven  modelling
■653    ▼aOn-road  vehicle  testing
■653    ▼aDeep  learning  neural  networks
■653    ▼aEmissions  modelling
■690    ▼a0548
■71020▼aUniversity  of  Michigan▼bMechanical  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g84-12B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16933666▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    פרט מידע

    • הזמנה
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • התיקיה שלי
    גשמי
    Reg No. Call No. מיקום מצב להשאיל מידע
    TQ0026927 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * הזמנות זמינים בספר ההשאלה. כדי להזמין, נא לחץ על כפתור ההזמנה

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치