본문

서브메뉴

Practical Numerical Trajectory Optimization Via Indirect Methods- [electronic resource]
Practical Numerical Trajectory Optimization Via Indirect Methods- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016935127
International Standard Book Number  
9798380490566
Dewey Decimal Classification Number  
519.93
Main Entry-Personal Name  
Nolan, Sean Matthew.
Publication, Distribution, etc. (Imprint  
[S.l.] : Purdue University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(206 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-04, Section: B.
General Note  
Advisor: DeLaurentis, Daniel A.;Grant, Michael J.
Dissertation Note  
Thesis (Ph.D.)--Purdue University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Numerical trajectory optimization is helpful not only for mission planning but also design space exploration and quantifying vehicle performance. Direct methods for solving the optimal control problems, which first discretize the problem before applying necessary conditions of optimality, dominate the field of trajectory optimization because they are easier for the user to set up and are less reliant on a forming a good initial guess. On the other hand, many consider indirect methods, which apply the necessary conditions of optimality prior to discretization, too difficult to use for practical applications. Indirect methods though provide very high quality solutions, easily accessible sensitivity information, and faster convergence given a sufficiently good guess. Those strengths make indirect methods especially well-suited for generating large data sets for system analysis and worth revisiting.Recent advancements in the application of indirect methods have already mitigated many of the often cited issues. Automatic derivation of the necessary conditions with computer algebra systems have eliminated the manual step which was time-intensive and error-prone. Furthermore, regularization techniques have reduced problems which traditionally needed many phases and complex staging, like those with inequality path constraints, to a significantly easier to handle single arc. Finally, continuation methods can circumvent the small radius of convergence of indirect methods by gradually changing the problem and use previously found solutions for guesses.The new optimal control problem solver Giuseppeincorporates and builds upon these advancements to make indirect methods more accessible and easily used. It seeks to enable greater research and creative approaches to problem solving by being more flexible and extensible than previous solvers. The solver accomplishes this by implementing a modular design with well-defined internal interfaces. Moreover, it allows the user easy access to and manipulation of component objects and functions to be use in the way best suited to solve a problem.A new technique simplifies and automates what was the predominate roadblock to using continuation, the generation of an initial guess for the seed solution. Reliable generation of a guess sufficient for convergence still usually required advanced knowledge optimal control theory or sometimes incorporation of an entirely separate optimization method. With the new method, a user only needs to supply initial states, a control profile, and a time-span over which to integrate. The guess generator then produces a guess for the "primal" problem through propagation of the initial value problem. It then estimates the "dual" (adjoint) variables by the Gauss-Newton method for solving the nonlinear least-squares problem. The decoupled approach prevents poorly guessed dual variables from altering the relatively easily guess primal variables. As a result, this method is simpler to use, faster to iterate, and much more reliable than previous guess generation techniques.Leveraging the continuation process also allows for greater insight into the solution space as there is only a small marginal cost to producing an additional nearby solutions. As a result, a user can quickly generate large families of solutions by sweeping parameters and modifying constraints. These families provide much greater insight in the general problem and underlying system than is obtainable with singular point solutions. One can extend these analyses to high-dimensional spaces through construction of compound continuation strategies expressible by directed trees.Lastly, a study into common convergence explicates their causes and recommends mitigation strategies. In this area, the continuation process also serves an important role. Adaptive step-size routines usually suffice to handle common sensitivity issues and scaling constraints is simpler and out-performs scaling parameters directly. Issues arise when a cost functional becomes insensitive to the control, which a small control cost mitigates. The best performance of the solver requires proper sizing of the smoothing parameters used in regularization methods. An asymptotic increase in the magnitude of adjoint variables indicate approaching a feasibility boundary of the solution space.These techniques for indirect methods greatly facilitate their use and enable the generation of large libraries of high-quality optimal trajectories for complex problems. In the future, these libraries can give a detailed account of vehicle performance throughout its flight envelope, feed higher-level system analyses, or inform real-time control applications.
Subject Added Entry-Topical Term  
Control theory.
Subject Added Entry-Topical Term  
Space exploration.
Subject Added Entry-Topical Term  
Boundary conditions.
Subject Added Entry-Topical Term  
Aerospace engineering.
Subject Added Entry-Topical Term  
Mathematics.
Subject Added Entry-Topical Term  
Systems science.
Added Entry-Corporate Name  
Purdue University.
Host Item Entry  
Dissertations Abstracts International. 85-04B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:640823

MARC

 008240220s2023        ulk                      00        kor
■001000016935127
■00520240214101856
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380490566
■035    ▼a(MiAaPQ)AAI30642171
■035    ▼a(MiAaPQ)Purdue23528169
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a519.93
■1001  ▼aNolan,  Sean  Matthew.
■24510▼aPractical  Numerical  Trajectory  Optimization  Via  Indirect  Methods▼h[electronic  resource]
■260    ▼a[S.l.]▼bPurdue  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(206  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-04,  Section:  B.
■500    ▼aAdvisor:  DeLaurentis,  Daniel  A.;Grant,  Michael  J.
■5021  ▼aThesis  (Ph.D.)--Purdue  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aNumerical  trajectory  optimization  is  helpful  not  only  for  mission  planning  but  also  design  space  exploration  and  quantifying  vehicle  performance.  Direct  methods  for  solving  the  optimal  control  problems,  which  first  discretize  the  problem  before  applying  necessary  conditions  of  optimality,  dominate  the  field  of  trajectory  optimization  because  they  are  easier  for  the  user  to  set  up  and  are  less  reliant  on  a  forming  a  good  initial  guess.  On  the  other  hand,  many  consider  indirect  methods,  which  apply  the  necessary  conditions  of  optimality  prior  to  discretization,  too  difficult  to  use  for  practical  applications.  Indirect  methods  though  provide  very  high  quality  solutions,  easily  accessible  sensitivity  information,  and  faster  convergence  given  a  sufficiently  good  guess.  Those  strengths  make  indirect  methods  especially  well-suited  for  generating  large  data  sets  for  system  analysis  and  worth  revisiting.Recent  advancements  in  the  application  of  indirect  methods  have  already  mitigated  many  of  the  often  cited  issues.  Automatic  derivation  of  the  necessary  conditions  with  computer  algebra  systems  have  eliminated  the  manual  step  which  was  time-intensive  and  error-prone.  Furthermore,  regularization  techniques  have  reduced  problems  which  traditionally  needed  many  phases  and  complex  staging,  like  those  with  inequality  path  constraints,  to  a  significantly  easier  to  handle  single  arc.  Finally,  continuation  methods  can  circumvent  the  small  radius  of  convergence  of  indirect  methods  by  gradually  changing  the  problem  and  use  previously  found  solutions  for  guesses.The  new  optimal  control  problem  solver  Giuseppeincorporates  and  builds  upon  these  advancements  to  make  indirect  methods  more  accessible  and  easily  used.  It  seeks  to  enable  greater  research  and  creative  approaches  to  problem  solving  by  being  more  flexible  and  extensible  than  previous  solvers.  The  solver  accomplishes  this  by  implementing  a  modular  design  with  well-defined  internal  interfaces.  Moreover,  it  allows  the  user  easy  access  to  and  manipulation  of  component  objects  and  functions  to  be  use  in  the  way  best  suited  to  solve  a  problem.A  new  technique  simplifies  and  automates  what  was  the  predominate  roadblock  to  using  continuation,  the  generation  of  an  initial  guess  for  the  seed  solution.  Reliable  generation  of  a  guess  sufficient  for  convergence  still  usually  required  advanced  knowledge  optimal  control  theory  or  sometimes  incorporation  of  an  entirely  separate  optimization  method.  With  the  new  method,  a  user  only  needs  to  supply  initial  states,  a  control  profile,  and  a  time-span  over  which  to  integrate.  The  guess  generator  then  produces  a  guess  for  the  "primal"  problem  through  propagation  of  the  initial  value  problem.  It  then  estimates  the  "dual"  (adjoint)  variables  by  the  Gauss-Newton  method  for  solving  the  nonlinear  least-squares  problem.  The  decoupled  approach  prevents  poorly  guessed  dual  variables  from  altering  the  relatively  easily  guess  primal  variables.  As  a  result,  this  method  is  simpler  to  use,  faster  to  iterate,  and  much  more  reliable  than  previous  guess  generation  techniques.Leveraging  the  continuation  process  also  allows  for  greater  insight  into  the  solution  space  as  there  is  only  a  small  marginal  cost  to  producing  an  additional  nearby  solutions.  As  a  result,  a  user  can  quickly  generate  large  families  of  solutions  by  sweeping  parameters  and  modifying  constraints.  These  families  provide  much  greater  insight  in  the  general  problem  and  underlying  system  than  is  obtainable  with  singular  point  solutions.  One  can  extend  these  analyses  to  high-dimensional  spaces  through  construction  of  compound  continuation  strategies  expressible  by  directed  trees.Lastly,  a  study  into  common  convergence  explicates  their  causes  and  recommends  mitigation  strategies.  In  this  area,  the  continuation  process  also  serves  an  important  role.  Adaptive  step-size  routines  usually  suffice  to  handle  common  sensitivity  issues  and  scaling  constraints  is  simpler  and  out-performs  scaling  parameters  directly.  Issues  arise  when  a  cost  functional  becomes  insensitive  to  the  control,  which  a  small  control  cost  mitigates.  The  best  performance  of  the  solver  requires  proper  sizing  of  the  smoothing  parameters  used  in  regularization  methods.  An  asymptotic  increase  in  the  magnitude  of  adjoint  variables  indicate  approaching  a  feasibility  boundary  of  the  solution  space.These  techniques  for  indirect  methods  greatly  facilitate  their  use  and  enable  the  generation  of  large  libraries  of  high-quality  optimal  trajectories  for  complex  problems.  In  the  future,  these  libraries  can  give  a  detailed  account  of  vehicle  performance  throughout  its  flight  envelope,  feed  higher-level  system  analyses,  or  inform  real-time  control  applications.
■590    ▼aSchool  code:  0183.
■650  4▼aControl  theory.
■650  4▼aSpace  exploration.
■650  4▼aBoundary  conditions.
■650  4▼aAerospace  engineering.
■650  4▼aMathematics.
■650  4▼aSystems  science.
■690    ▼a0538
■690    ▼a0405
■690    ▼a0790
■71020▼aPurdue  University.
■7730  ▼tDissertations  Abstracts  International▼g85-04B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0183
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16935127▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    detalle info

    • Reserva
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Mi carpeta
    Material
    número de libro número de llamada Ubicación estado Prestar info
    TQ0026743 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Las reservas están disponibles en el libro de préstamos. Para hacer reservaciones, haga clic en el botón de reserva

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치