본문

서브메뉴

Adaptive Sequential Decision Making: Bandit Optimization and Active Learning- [electronic resource]
Adaptive Sequential Decision Making: Bandit Optimization and Active Learning- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016935006
International Standard Book Number  
9798380616409
Dewey Decimal Classification Number  
004
Main Entry-Personal Name  
Liu, Chong.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of California, Santa Barbara., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(194 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-04, Section: B.
General Note  
Advisor: Wang, Yu-Xiang.
Dissertation Note  
Thesis (Ph.D.)--University of California, Santa Barbara, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Deep neural networks usually have many hyperparameters that need to be tuned. Modern material design problems usually require material scientists to sequentially select processing parameters and conduct experiments to observe material performances. To save privacy cost, the learning system needs to carefully choose queries to answer under the differential privacy framework. To train a robot under video guidance, engineers need to carefully choose video samples for training. However, in all cases, people cannot observe performances of unselected actions and the experimental cost can be huge. These two challenges hinder efficient neural network training, new material design, privacy protection, and robot training and call for actions. In this thesis, I present my research on optimization, bandits, and active learning under the adaptive sequential decision making framework. My algorithms are able to solve black box function optimization without the curse of dimensionality, achieve no regret under the function class misspecification, reduce privacy cost under the differential privacy framework, and significantly reduce video sample complexity for robot training. All of them come with theoretical or empirical analysis.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Information technology.
Index Term-Uncontrolled  
Deep neural networks
Index Term-Uncontrolled  
Privacy framework
Index Term-Uncontrolled  
Privacy protection
Index Term-Uncontrolled  
Decision making
Index Term-Uncontrolled  
Bandit optimization
Added Entry-Corporate Name  
University of California, Santa Barbara Computer Science
Host Item Entry  
Dissertations Abstracts International. 85-04B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:640727

MARC

 008240220s2023        ulk                      00        kor
■001000016935006
■00520240214101842
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380616409
■035    ▼a(MiAaPQ)AAI30638337
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a004
■1001  ▼aLiu,  Chong.
■24510▼aAdaptive  Sequential  Decision  Making:  Bandit  Optimization  and  Active  Learning▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  California,  Santa  Barbara.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(194  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-04,  Section:  B.
■500    ▼aAdvisor:  Wang,  Yu-Xiang.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  Santa  Barbara,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aDeep  neural  networks  usually  have  many  hyperparameters  that  need  to  be  tuned.  Modern  material  design  problems  usually  require  material  scientists  to  sequentially  select  processing  parameters  and  conduct  experiments  to  observe  material  performances.  To  save  privacy  cost,  the  learning  system  needs  to  carefully  choose  queries  to  answer  under  the  differential  privacy  framework.  To  train  a  robot  under  video  guidance,  engineers  need  to  carefully  choose  video  samples  for  training.  However,  in  all  cases,  people  cannot  observe  performances  of  unselected  actions  and  the  experimental  cost  can  be  huge.  These  two  challenges  hinder  efficient  neural  network  training,  new  material  design,  privacy  protection,  and  robot  training  and  call  for  actions.  In  this  thesis,  I  present  my  research  on  optimization,  bandits,  and  active  learning  under  the  adaptive  sequential  decision  making  framework.  My  algorithms  are  able  to  solve  black  box  function  optimization  without  the  curse  of  dimensionality,  achieve  no  regret  under  the  function  class  misspecification,  reduce  privacy  cost  under  the  differential  privacy  framework,  and  significantly  reduce  video  sample  complexity  for  robot  training.  All  of  them  come  with  theoretical  or  empirical  analysis.
■590    ▼aSchool  code:  0035.
■650  4▼aComputer  science.
■650  4▼aInformation  technology.
■653    ▼aDeep  neural  networks
■653    ▼aPrivacy  framework
■653    ▼aPrivacy  protection
■653    ▼aDecision  making
■653    ▼aBandit  optimization
■690    ▼a0984
■690    ▼a0489
■690    ▼a0800
■71020▼aUniversity  of  California,  Santa  Barbara▼bComputer  Science.
■7730  ▼tDissertations  Abstracts  International▼g85-04B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0035
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16935006▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    詳細情報

    • 予約
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 私のフォルダ
    資料
    登録番号 請求記号 場所 ステータス 情報を貸す
    TQ0026647 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *ご予約は、借入帳でご利用いただけます。予約をするには、予約ボタンをクリックしてください

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치