본문

서브메뉴

Improving Equity in Decision Support Systems- [electronic resource]
Improving Equity in Decision Support Systems- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016933723
International Standard Book Number  
9798380257169
Dewey Decimal Classification Number  
900
Main Entry-Personal Name  
Newton, Robert A.
Publication, Distribution, etc. (Imprint  
[S.l.] : The Pennsylvania State University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(117 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-03, Section: A.
General Note  
Advisor: Griffin, Paul M.
Dissertation Note  
Thesis (Ph.D.)--The Pennsylvania State University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약This dissertation introduces several methods to improve equitability among stakeholders in decision support systems. Each model provides decision makers frameworks with which to consider both resulting overall impacts as well as distributions across subgroups. Whether allocating funds or services, we seek to provide a foundation for decision makers to navigate their problem sets to prioritize accurate and fair allocations inclusive of all stakeholders.In 2021, four major pharmaceutical manufacturers and distributors reached a proposed settlement agreement with 46 state Attorneys General of $26 billion to address their liabilities in fueling the US opioid epidemic. It raises important questions about abatement conceptualization and measurement for allocating settlement funds among sub-state entities. We outline the political economy tensions undergirding the settlement and allocation, introduce an abatement conceptual framework, describe how an abatement formula was developed for Pennsylvania to allocate settlement funds, and summarize considerations for future settlement allocation efforts.We, then, evaluated the weighted combination of metrics agreed upon by Pennsylvania stakeholders to allocate settlement funds along with three other strategies from the literature that optimize allocations based on social welfare functions. We present these strategies and use them to compute new allocations for comparison. Specifically, we contrast Pennsylvania's strategy with strategies that 1) minimize total deviation, 2) minimize the worst-case (minimax) regret, and 3) balance efficiency with equity using alpha-fairness. While the Pennsylvania allocation is noteworthy in that all parties agreed to it, an allocation based on relative regret may be a more fairly perceived allocation---whether using minimax regret or blending efficiency using proportional fairness.We, next, offer a model to site additional locations to address inequity found from minimizing mean absolute deviation informed by locations recommended as maximal covering location problem solutions---to maximize the number of emergencies within the overall average distance. We used these solutions to recommend additional locations to decision makers, and provide an example solution using 2019 data from the United States Internal Revenue Service and San Francisco Fire Department that significantly increases the access to emergency rooms for low income ZIP code tabulation areas while reducing overall average distance to an emergency room and the mean absolute deviation.Finally, we discuss a model to support how Air Force Special Operations Command screens and selects candidates to lead operational squadrons each year. Currently, the command's senior leaders manually score each eligible officer's record. Senior leaders then evaluate officers who score above a given level, discussing suitability and fit for unit leadership. We developed a deep neural network to assist record scoring in a bias-aware process, utilizing an existing personnel database, generating scores for officer records. While demographics were unbalanced (predominantly white males), our network demonstrated 94% accuracy for candidate selection when compared to the 2020 results, and no significance of gender and race factors, suggesting the approach assist the board during the initial sorting phase. Such a model could free senior leaders from spending valuable time reviewing hundreds of records, instead spending collective time applying knowledge of candidates and squadrons to ensure the command selects high caliber leaders.
Subject Added Entry-Topical Term  
Hispanic Americans.
Subject Added Entry-Topical Term  
Emergency medical care.
Subject Added Entry-Topical Term  
Drug overdose.
Subject Added Entry-Topical Term  
Integer programming.
Subject Added Entry-Topical Term  
Demographics.
Subject Added Entry-Topical Term  
Decision making.
Subject Added Entry-Topical Term  
Neural networks.
Subject Added Entry-Topical Term  
Settlements & damages.
Subject Added Entry-Topical Term  
Tobacco.
Subject Added Entry-Topical Term  
Narcotics.
Subject Added Entry-Topical Term  
Industrial engineering.
Index Term-Uncontrolled  
Equity
Index Term-Uncontrolled  
Decision makers
Index Term-Uncontrolled  
Decision support systems
Index Term-Uncontrolled  
Stakeholders
Index Term-Uncontrolled  
Pharmaceutical manufacturers
Added Entry-Corporate Name  
The Pennsylvania State University.
Host Item Entry  
Dissertations Abstracts International. 85-03A.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:640689

MARC

 008240220s2023        ulk                      00        kor
■001000016933723
■00520240214101328
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380257169
■035    ▼a(MiAaPQ)AAI30551203
■035    ▼a(MiAaPQ)PennState_24026ran5267
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a900
■1001  ▼aNewton,  Robert  A.
■24510▼aImproving  Equity  in  Decision  Support  Systems▼h[electronic  resource]
■260    ▼a[S.l.]▼bThe  Pennsylvania  State  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(117  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-03,  Section:  A.
■500    ▼aAdvisor:  Griffin,  Paul  M.
■5021  ▼aThesis  (Ph.D.)--The  Pennsylvania  State  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aThis  dissertation  introduces  several  methods  to  improve  equitability  among  stakeholders  in  decision  support  systems.  Each  model  provides  decision  makers  frameworks  with  which  to  consider  both  resulting  overall  impacts  as  well  as  distributions  across  subgroups.  Whether  allocating  funds  or  services,  we  seek  to  provide  a  foundation  for  decision  makers  to  navigate  their  problem  sets  to  prioritize  accurate  and  fair  allocations  inclusive  of  all  stakeholders.In  2021,  four  major  pharmaceutical  manufacturers  and  distributors  reached  a  proposed  settlement  agreement  with  46  state  Attorneys  General  of  $26  billion  to  address  their  liabilities  in  fueling  the  US  opioid  epidemic.  It  raises  important  questions  about  abatement  conceptualization  and  measurement  for  allocating  settlement  funds  among  sub-state  entities.  We  outline  the  political  economy  tensions  undergirding  the  settlement  and  allocation,  introduce  an  abatement  conceptual  framework,  describe  how  an  abatement  formula  was  developed  for  Pennsylvania  to  allocate  settlement  funds,  and  summarize  considerations  for  future  settlement  allocation  efforts.We,  then,  evaluated  the  weighted  combination  of  metrics  agreed  upon  by  Pennsylvania  stakeholders  to  allocate  settlement  funds  along  with  three  other  strategies  from  the  literature  that  optimize  allocations  based  on  social  welfare  functions.  We  present  these  strategies  and  use  them  to  compute  new  allocations  for  comparison.  Specifically,  we  contrast  Pennsylvania's  strategy  with  strategies  that  1)  minimize  total  deviation,  2)  minimize  the  worst-case  (minimax)  regret,  and  3)  balance  efficiency  with  equity  using  alpha-fairness.  While  the  Pennsylvania  allocation  is  noteworthy  in  that  all  parties  agreed  to  it,  an  allocation  based  on  relative  regret  may  be  a  more  fairly  perceived  allocation---whether  using  minimax  regret  or  blending  efficiency  using  proportional  fairness.We,  next,  offer  a  model  to  site  additional  locations  to  address  inequity  found  from  minimizing  mean  absolute  deviation  informed  by  locations  recommended  as  maximal  covering  location  problem  solutions---to  maximize  the  number  of  emergencies  within  the  overall  average  distance.  We  used  these  solutions  to  recommend  additional  locations  to  decision  makers,  and  provide  an  example  solution  using  2019  data  from  the  United  States  Internal  Revenue  Service  and  San  Francisco  Fire  Department  that  significantly  increases  the  access  to  emergency  rooms  for  low  income  ZIP  code  tabulation  areas  while  reducing  overall  average  distance  to  an  emergency  room  and  the  mean  absolute  deviation.Finally,  we  discuss  a  model  to  support  how  Air  Force  Special  Operations  Command  screens  and  selects  candidates  to  lead  operational  squadrons  each  year.  Currently,  the  command's  senior  leaders  manually  score  each  eligible  officer's  record.  Senior  leaders  then  evaluate  officers  who  score  above  a  given  level,  discussing  suitability  and  fit  for  unit  leadership.  We  developed  a  deep  neural  network  to  assist  record  scoring  in  a  bias-aware  process,  utilizing  an  existing  personnel  database,  generating  scores  for  officer  records.  While  demographics  were  unbalanced  (predominantly  white  males),  our  network  demonstrated  94%  accuracy  for  candidate  selection  when  compared  to  the  2020  results,  and  no  significance  of  gender  and  race  factors,  suggesting  the  approach  assist  the  board  during  the  initial  sorting  phase.  Such  a  model  could  free  senior  leaders  from  spending  valuable  time  reviewing  hundreds  of  records,  instead  spending  collective  time  applying  knowledge  of  candidates  and  squadrons  to  ensure  the  command  selects  high  caliber  leaders.
■590    ▼aSchool  code:  0176.
■650  4▼aHispanic  Americans.
■650  4▼aEmergency  medical  care.
■650  4▼aDrug  overdose.
■650  4▼aInteger  programming.
■650  4▼aDemographics.
■650  4▼aDecision  making.
■650  4▼aNeural  networks.
■650  4▼aSettlements  &  damages.
■650  4▼aTobacco.
■650  4▼aNarcotics.
■650  4▼aIndustrial  engineering.
■653    ▼aEquity
■653    ▼aDecision  makers
■653    ▼aDecision  support  systems
■653    ▼aStakeholders
■653    ▼aPharmaceutical  manufacturers
■690    ▼a0796
■690    ▼a0454
■690    ▼a0546
■71020▼aThe  Pennsylvania  State  University.
■7730  ▼tDissertations  Abstracts  International▼g85-03A.
■773    ▼tDissertation  Abstract  International
■790    ▼a0176
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16933723▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    高级搜索信息

    • 预订
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 我的文件夹
    材料
    注册编号 呼叫号码. 收藏 状态 借信息.
    TQ0026609 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *保留在借用的书可用。预订,请点击预订按钮

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치