본문

서브메뉴

Using Family Sequencing Data to Understand Sequencing Errors, Meiotic Crossovers, and Disease Risk- [electronic resource]
Using Family Sequencing Data to Understand Sequencing Errors, Meiotic Crossovers, and Disease Risk- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016931973
International Standard Book Number  
9798379658496
Dewey Decimal Classification Number  
300
Main Entry-Personal Name  
Paskov, Kelley Marie.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2022
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2022
Physical Description  
1 online resource(87 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 84-12, Section: A.
General Note  
Advisor: Hastie, Trevor;Sabatti, Chiara;Wall, Dennis.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2022.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Despite widespread sequencing efforts, the genetic etiologies of many complex diseases remain poorly understood. One explanation is that the recent explosive population growth of humans has dramatically increased the impact of rare variation on complex traits. These variants are unlikely to be in strong linkage disequilibrium with their neighbors, and thus are invisible to association-based approaches. In this work, we show that family-based linkage methods, when adapted to handle the large sample sizes and dense marker sets that are now available, provide an opportunity to find and understand these otherwise hidden variants. Linkage methods do not rely on linkage disequilibrium in a population, and instead exploit genetic inheritance in families to identify risk regions, even when causal variants are unobserved and are not in linkage disequilibrium with nearby markers. We have developed a series of methods that use large cohorts of family-based sequencing datasets to better understand sequencing error rates, meiotic crossovers, and disease risk. First, we show that familial relationships can be leveraged to estimate sample-level estimates of sequencing error rates. These error rates can be used to evaluate variant calling pipelines and to compare their error rates in different genomic contexts. Next, we develop a hidden Markov model that identifies meiotic crossovers, shared genetic material between siblings, and inherited deletions in families. Our algorithm is specifically designed to handle the complexity of whole-genome sequencing data and is able to uncover meiotic crossovers with 10x better resolution than existing microarray-based methods. Finally, because our algorithm produces nearly complete ( 99%) genome-wide identity-by-descent (IBD) status between siblings, we develop a genome-wide sibling-pair linkage test which leverages sibling IBD to identify genomic regions harboring risk variants. This method not only increases detection power for rare risk variants, but also enables the use of microarrays which are widely and affordably available in the consumer market. Applying our method to crowdsourced autism families who have taken Ancestry.com DNA tests, we identify two significant autism risk regions which we validate with a separate and independent microarray dataset. While family-based approaches to marker detection have taken a back seat to case-control cohort-based approaches in the last 15 years of human genetics, here we show how returning our attention to families provides the power to uncover key events in the genome that cannot be detected otherwise. This thesis provides a framework for extending family-based linkage analysis into the era of next-generation sequencing in order to increase our understanding of genetic risk factors for complex diseases.
Subject Added Entry-Topical Term  
Parents & parenting.
Subject Added Entry-Topical Term  
Maps.
Subject Added Entry-Topical Term  
Chromosomes.
Subject Added Entry-Topical Term  
Autistic children.
Subject Added Entry-Topical Term  
Families & family life.
Subject Added Entry-Topical Term  
Software.
Subject Added Entry-Topical Term  
Genomes.
Subject Added Entry-Topical Term  
Algorithms.
Subject Added Entry-Topical Term  
Siblings.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Genetics.
Subject Added Entry-Topical Term  
Individual & family studies.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 84-12A.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:640669

MARC

 008240220s2022        ulk                      00        kor
■001000016931973
■00520240214100355
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379658496
■035    ▼a(MiAaPQ)AAI30462692
■035    ▼a(MiAaPQ)STANFORDzd828ty8201
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a300
■1001  ▼aPaskov,  Kelley  Marie.
■24510▼aUsing  Family  Sequencing  Data  to  Understand  Sequencing  Errors,  Meiotic  Crossovers,  and  Disease  Risk▼h[electronic  resource]
■260    ▼a[S.l.]▼bStanford  University.  ▼c2022
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2022
■300    ▼a1  online  resource(87  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  84-12,  Section:  A.
■500    ▼aAdvisor:  Hastie,  Trevor;Sabatti,  Chiara;Wall,  Dennis.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2022.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aDespite  widespread  sequencing  efforts,  the  genetic  etiologies  of  many  complex  diseases  remain  poorly  understood.  One  explanation  is  that  the  recent  explosive  population  growth  of  humans  has  dramatically  increased  the  impact  of  rare  variation  on  complex  traits.  These  variants  are  unlikely  to  be  in  strong  linkage  disequilibrium  with  their  neighbors,  and  thus  are  invisible  to  association-based  approaches.  In  this  work,  we  show  that  family-based  linkage  methods,  when  adapted  to  handle  the  large  sample  sizes  and  dense  marker  sets  that  are  now  available,  provide  an  opportunity  to  find  and  understand  these  otherwise  hidden  variants.  Linkage  methods  do  not  rely  on  linkage  disequilibrium  in  a  population,  and  instead  exploit  genetic  inheritance  in  families  to  identify  risk  regions,  even  when  causal  variants  are  unobserved  and  are  not  in  linkage  disequilibrium  with  nearby  markers.  We  have  developed  a  series  of  methods  that  use  large  cohorts  of  family-based  sequencing  datasets  to  better  understand  sequencing  error  rates,  meiotic  crossovers,  and  disease  risk.  First,  we  show  that  familial  relationships  can  be  leveraged  to  estimate  sample-level  estimates  of  sequencing  error  rates.  These  error  rates  can  be  used  to  evaluate  variant  calling  pipelines  and  to  compare  their  error  rates  in  different  genomic  contexts.  Next,  we  develop  a  hidden  Markov  model  that  identifies  meiotic  crossovers,  shared  genetic  material  between  siblings,  and  inherited  deletions  in  families.  Our  algorithm  is  specifically  designed  to  handle  the  complexity  of  whole-genome  sequencing  data  and  is  able  to  uncover  meiotic  crossovers  with  10x  better  resolution  than  existing  microarray-based  methods.  Finally,  because  our  algorithm  produces  nearly  complete  (  99%)  genome-wide  identity-by-descent  (IBD)  status  between  siblings,  we  develop  a  genome-wide  sibling-pair  linkage  test  which  leverages  sibling  IBD  to  identify  genomic  regions  harboring  risk  variants.  This  method  not  only  increases  detection  power  for  rare  risk  variants,  but  also  enables  the  use  of  microarrays  which  are  widely  and  affordably  available  in  the  consumer  market.  Applying  our  method  to  crowdsourced  autism  families  who  have  taken  Ancestry.com  DNA  tests,  we  identify  two  significant  autism  risk  regions  which  we  validate  with  a  separate  and  independent  microarray  dataset.  While  family-based  approaches  to  marker  detection  have  taken  a  back  seat  to  case-control  cohort-based  approaches  in  the  last  15  years  of  human  genetics,  here  we  show  how  returning  our  attention  to  families  provides  the  power  to  uncover  key  events  in  the  genome  that  cannot  be  detected  otherwise.  This  thesis  provides  a  framework  for  extending  family-based  linkage  analysis  into  the  era  of  next-generation  sequencing  in  order  to  increase  our  understanding  of  genetic  risk  factors  for  complex  diseases.
■590    ▼aSchool  code:  0212.
■650  4▼aParents  &  parenting.
■650  4▼aMaps.
■650  4▼aChromosomes.
■650  4▼aAutistic  children.
■650  4▼aFamilies  &  family  life.
■650  4▼aSoftware.
■650  4▼aGenomes.
■650  4▼aAlgorithms.
■650  4▼aSiblings.
■650  4▼aComputer  science.
■650  4▼aGenetics.
■650  4▼aIndividual  &  family  studies.
■690    ▼a0984
■690    ▼a0369
■690    ▼a0628
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g84-12A.
■773    ▼tDissertation  Abstract  International
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2022
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16931973▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0026592 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치