본문

서브메뉴

Discrete Optimization Methods for Scheduling and Matrix Completion- [electronic resource]
Discrete Optimization Methods for Scheduling and Matrix Completion- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016934953
International Standard Book Number  
9798380142410
Dewey Decimal Classification Number  
510
Main Entry-Personal Name  
Soni, Akhilesh.
Publication, Distribution, etc. (Imprint  
[S.l.] : The University of Wisconsin - Madison., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(172 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-02, Section: B.
General Note  
Advisor: Linderoth, Jeffrey;Luedtke, James.
Dissertation Note  
Thesis (Ph.D.)--The University of Wisconsin - Madison, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약The thesis consists of research in mixed integer linear programming with applications to scheduling and matrix completion. We first study the problem of scheduling drilling and fracturing of pads in the development of an unconventional oil field. We propose a novel MILP formulation for solving this scheduling problem which considers capacity, operational, precedence, and interference constraints. We also propose a formulation that uses more decision variables, but which provides a stronger linear programming relaxation. Due to the large problem size, solving the full MILP model for instances with many pads and a large number of time periods is intractable. Thus, we also derive a MILP-based rolling horizon framework that solves a sequence of limited horizon, coarser-scale MILP instances in a rolling forward fashion to obtain a solution to the full horizon problem on the daily time scale. We benchmark this approach against a baseline scheduling algorithm that approximates current practice of scheduling pads in the order of discounted production profit with limited lookahead. Our results show that our proposed MILP-based rolling horizon approach can improve the net present value of a field by 4-6%.Next, we present new integer programming approaches to matrix completion problems, both in the real field and in the finite field GF(2). First, we study an integer programming approach for subspace clustering with missing data problem in real field with an assumption that underlying data comes from a union of subspaces. Subspace clustering with missing data is the task of identifying clusters of vectors belonging to the same subspace in a partially observed data matrix whose columns are assumed to lie in a union of K subspaces. We propose a novel mixed-integer linear programming solution framework (MISS-DSG) for this problem that is based on dynamically determining a set of candidate subspaces and optimally assigning data points to the closest selected subspace. MISS-DSG handles a large number of candidate subspaces through its use of Benders decomposition and dynamically generates new candidate subspaces through its use of column generation. We cast the subspace generation problem as a nonlinear, nonconvex optimization problem and propose a gradient-based approximate solution approach. The model has the advantage of integrating the subspace generation and clustering in a single, unified optimization framework without requiring any hyperparameter tuning when number of subspaces and subspaces dimensions are known. Our computational results reveal that the proposed method can achieve higher clustering accuracy than state-of-the-art methods when data is of high-rank, the percentage of missing data is high, or subspaces are close to each other.We next discuss binary matrix completion methods in GF(2) where the arithmetic is done with respect to modulo-2 operations. We give integer linear programming formulations for matrix factorization and completion in GF(2). We first derive formulations making use of McCormick envelopes for the product of two binary variables: a base formulation using a general integer variable and an extended formulation using ideas from disjunctive programming and parity polytopes. The latter formulation characterizes the convex hull of the dot product of two vectors in an extended space. We then derive a novel formulation based on a new class of valid inequalities that also characterizes the convex hull of the dot product in the original space of variables. Our computational results reveal that the proposed formulation results in smaller branch-and-bound trees. Furthermore, we also derive additional classes of valid inequalities linking dot products between two matrix elements.
Subject Added Entry-Topical Term  
Mathematics.
Subject Added Entry-Topical Term  
Computer science.
Index Term-Uncontrolled  
Benders decomposition
Index Term-Uncontrolled  
Column generation
Index Term-Uncontrolled  
Integer programming
Index Term-Uncontrolled  
Matrix completion
Index Term-Uncontrolled  
Scheduling
Index Term-Uncontrolled  
Valid inequalities
Added Entry-Corporate Name  
The University of Wisconsin - Madison Industrial Engineering
Host Item Entry  
Dissertations Abstracts International. 85-02B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:640640

MARC

 008240220s2023        ulk                      00        kor
■001000016934953
■00520240214101835
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380142410
■035    ▼a(MiAaPQ)AAI30637183
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a510
■1001  ▼aSoni,  Akhilesh.
■24510▼aDiscrete  Optimization  Methods  for  Scheduling  and  Matrix  Completion▼h[electronic  resource]
■260    ▼a[S.l.]▼bThe  University  of  Wisconsin  -  Madison.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(172  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-02,  Section:  B.
■500    ▼aAdvisor:  Linderoth,  Jeffrey;Luedtke,  James.
■5021  ▼aThesis  (Ph.D.)--The  University  of  Wisconsin  -  Madison,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aThe  thesis  consists  of  research  in  mixed  integer  linear  programming  with  applications  to  scheduling  and  matrix  completion.  We  first  study  the  problem  of  scheduling  drilling  and  fracturing  of  pads  in  the  development  of  an  unconventional  oil  field.  We  propose  a  novel  MILP  formulation  for  solving  this  scheduling  problem  which  considers  capacity,  operational,  precedence,  and  interference  constraints.  We  also  propose  a  formulation  that  uses  more  decision  variables,  but  which  provides  a  stronger  linear  programming  relaxation.  Due  to  the  large  problem  size,  solving  the  full  MILP  model  for  instances  with  many  pads  and  a  large  number  of  time  periods  is  intractable.  Thus,  we  also  derive  a  MILP-based  rolling  horizon  framework  that  solves  a  sequence  of  limited  horizon,  coarser-scale  MILP  instances  in  a  rolling  forward  fashion  to  obtain  a  solution  to  the  full  horizon  problem  on  the  daily  time  scale.  We  benchmark  this  approach  against  a  baseline  scheduling  algorithm  that  approximates  current  practice  of  scheduling  pads  in  the  order  of  discounted  production  profit  with  limited  lookahead.  Our  results  show  that  our  proposed  MILP-based  rolling  horizon  approach  can  improve  the  net  present  value  of  a  field  by  4-6%.Next,  we  present  new  integer  programming  approaches  to  matrix  completion  problems,  both  in  the  real  field  and  in  the  finite  field  GF(2).  First,  we  study  an  integer  programming  approach  for  subspace  clustering  with  missing  data  problem  in  real  field  with  an  assumption  that  underlying  data  comes  from  a  union  of  subspaces.  Subspace  clustering  with  missing  data  is  the  task  of  identifying  clusters  of  vectors  belonging  to  the  same  subspace  in  a  partially  observed  data  matrix  whose  columns  are  assumed  to  lie  in  a  union  of  K  subspaces.  We  propose  a  novel  mixed-integer  linear  programming  solution  framework  (MISS-DSG)  for  this  problem  that  is  based  on  dynamically  determining  a  set  of  candidate  subspaces  and  optimally  assigning  data  points  to  the  closest  selected  subspace.  MISS-DSG  handles  a  large  number  of  candidate  subspaces  through  its  use  of  Benders  decomposition  and  dynamically  generates  new  candidate  subspaces  through  its  use  of  column  generation.  We  cast  the  subspace  generation  problem  as  a  nonlinear,  nonconvex  optimization  problem  and  propose  a  gradient-based  approximate  solution  approach.  The  model  has  the  advantage  of  integrating  the  subspace  generation  and  clustering  in  a  single,  unified  optimization  framework  without  requiring  any  hyperparameter  tuning  when  number  of  subspaces  and  subspaces  dimensions  are  known.  Our  computational  results  reveal  that  the  proposed  method  can  achieve  higher  clustering  accuracy  than  state-of-the-art  methods  when  data  is  of  high-rank,  the  percentage  of  missing  data  is  high,  or  subspaces  are  close  to  each  other.We  next  discuss  binary  matrix  completion  methods  in  GF(2)  where  the  arithmetic  is  done  with  respect  to  modulo-2  operations.  We  give  integer  linear  programming  formulations  for  matrix  factorization  and  completion  in  GF(2).  We  first  derive  formulations  making  use  of  McCormick  envelopes  for  the  product  of  two  binary  variables:  a  base  formulation  using  a  general  integer  variable  and  an  extended  formulation  using  ideas  from  disjunctive  programming  and  parity  polytopes.  The  latter  formulation  characterizes  the  convex  hull  of  the  dot  product  of  two  vectors  in  an  extended  space.  We  then  derive  a  novel  formulation  based  on  a  new  class  of  valid  inequalities  that  also  characterizes  the  convex  hull  of  the  dot  product  in  the  original  space  of  variables.  Our  computational  results  reveal  that  the  proposed  formulation  results  in  smaller  branch-and-bound  trees.  Furthermore,  we  also  derive  additional  classes  of  valid  inequalities  linking  dot  products  between  two  matrix  elements.
■590    ▼aSchool  code:  0262.
■650  4▼aMathematics.
■650  4▼aComputer  science.
■653    ▼aBenders  decomposition
■653    ▼aColumn  generation
■653    ▼aInteger  programming
■653    ▼aMatrix  completion
■653    ▼aScheduling
■653    ▼aValid  inequalities
■690    ▼a0796
■690    ▼a0984
■690    ▼a0405
■71020▼aThe  University  of  Wisconsin  -  Madison▼bIndustrial  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g85-02B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0262
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16934953▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0026563 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치