본문

서브메뉴

Studying Neural Computation Through Connectomics- [electronic resource]
Studying Neural Computation Through Connectomics - [electronic resource]
Studying Neural Computation Through Connectomics- [electronic resource]

상세정보

Material Type  
 학위논문
 
0016934952
Date and Time of Latest Transaction  
20240214101835
ISBN  
9798380383202
DDC  
530
Author  
Baserdem, Batuhan.
Title/Author  
Studying Neural Computation Through Connectomics - [electronic resource]
Publish Info  
[S.l.] : State University of New York at Stony Brook., 2023
Publish Info  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Material Info  
1 online resource(123 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-03, Section: B.
General Note  
Advisor: Serra, Marivi Victoria Fernandez;Koulakov, Alexei;Dawber, Matthew.
학위논문주기  
Thesis (Ph.D.)--State University of New York at Stony Brook, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Abstracts/Etc  
요약Neurons in the brain of biological organisms constantly perform calculations that are complex and non-linear. Both the physiology and the organization of the connections of neurons are crucial in studying how such calculations are performed. The connectome, a term coined as parallel to the genome, consists of the total information of the neural connections in the brain. Studying and inferring the connectome is crucial for understanding how information is processed by organisms. In recent years, inspiration from the structure of biological neural networks has given rise to digital algorithms that are able to perform similar complex calculations. Such algorithms are collectively referred to as artificial neural networks (ANNs), and are able to perform tasks that have been deemed otherwise intractable. With these algorithms, obtaining the connections that performs specific tasks is the main objective; highlighting the importance of structure of connectivity for performing neural computations.This dissertation will briefly introduce neural networks of biological and artificial variety. They will be studied on how the connectivity relates to their function. The question of how connectomic information can be compressed, stored and retrieved will be explored. A theoretical framework of biologically plausible connectome cloning will be studied, demonstrating that the connectome can be stored and retrieved genetically using a local self-assembly algorithm. A recent imaging technique that measures high-throughput connectomic information will be introduced, along with the analysis tools used to extract previously unknown structure of the mouse olfactory system. Lastly, odor navigation tasks will be performed in a simulated environment to study the role of connectomics in performing foraging tasks within a Reinforcement Learning paradigm.
Subject Added Entry-Topical Term  
Physics.
Subject Added Entry-Topical Term  
Neurosciences.
Subject Added Entry-Topical Term  
Computational physics.
Index Term-Uncontrolled  
Connectome
Index Term-Uncontrolled  
Connectomics
Index Term-Uncontrolled  
Neural networks
Index Term-Uncontrolled  
Olfaction
Index Term-Uncontrolled  
Reinforcement learning
Index Term-Uncontrolled  
Artificial neural networks
Index Term-Uncontrolled  
Neurons
Added Entry-Corporate Name  
State University of New York at Stony Brook Physics
Host Item Entry  
Dissertations Abstracts International. 85-03B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
소장사항  
202402 2024
Control Number  
joongbu:640639

MARC

 008240220s2023        ulk                      00        kor
■001000016934952
■00520240214101835
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380383202
■035    ▼a(MiAaPQ)AAI30637141
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a530
■1001  ▼aBaserdem,  Batuhan.
■24510▼aStudying  Neural  Computation  Through  Connectomics▼h[electronic  resource]
■260    ▼a[S.l.]▼bState  University  of  New  York  at  Stony  Brook.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(123  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-03,  Section:  B.
■500    ▼aAdvisor:  Serra,  Marivi  Victoria  Fernandez;Koulakov,  Alexei;Dawber,  Matthew.
■5021  ▼aThesis  (Ph.D.)--State  University  of  New  York  at  Stony  Brook,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aNeurons  in  the  brain  of  biological  organisms  constantly  perform  calculations  that  are  complex  and  non-linear.  Both  the  physiology  and  the  organization  of  the  connections  of  neurons  are  crucial  in  studying  how  such  calculations  are  performed.  The  connectome,  a  term  coined  as  parallel  to  the  genome,  consists  of  the  total  information  of  the  neural  connections  in  the  brain.  Studying  and  inferring  the  connectome  is  crucial  for  understanding  how  information  is  processed  by  organisms.  In  recent  years,  inspiration  from  the  structure  of  biological  neural  networks  has  given  rise  to  digital  algorithms  that  are  able  to  perform  similar  complex  calculations.  Such  algorithms  are  collectively  referred  to  as  artificial  neural  networks  (ANNs),  and  are  able  to  perform  tasks  that  have  been  deemed  otherwise  intractable.  With  these  algorithms,  obtaining  the  connections  that  performs  specific  tasks  is  the  main  objective;  highlighting  the  importance  of  structure  of  connectivity  for  performing  neural  computations.This  dissertation  will  briefly  introduce  neural  networks  of  biological  and  artificial  variety.  They  will  be  studied  on  how  the  connectivity  relates  to  their  function.  The  question  of  how  connectomic  information  can  be  compressed,  stored  and  retrieved  will  be  explored.  A  theoretical  framework  of  biologically  plausible  connectome  cloning  will  be  studied,  demonstrating  that  the  connectome  can  be  stored  and  retrieved  genetically  using  a  local  self-assembly  algorithm.  A  recent  imaging  technique  that  measures  high-throughput  connectomic  information  will  be  introduced,  along  with  the  analysis  tools  used  to  extract  previously  unknown  structure  of  the  mouse  olfactory  system.  Lastly,  odor  navigation  tasks  will  be  performed  in  a  simulated  environment  to  study  the  role  of  connectomics  in  performing  foraging  tasks  within  a  Reinforcement  Learning  paradigm.
■590    ▼aSchool  code:  0771.
■650  4▼aPhysics.
■650  4▼aNeurosciences.
■650  4▼aComputational  physics.
■653    ▼aConnectome
■653    ▼aConnectomics
■653    ▼aNeural  networks
■653    ▼aOlfaction
■653    ▼aReinforcement  learning
■653    ▼aArtificial  neural  networks
■653    ▼aNeurons
■690    ▼a0605
■690    ▼a0317
■690    ▼a0216
■71020▼aState  University  of  New  York  at  Stony  Brook▼bPhysics.
■7730  ▼tDissertations  Abstracts  International▼g85-03B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0771
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16934952▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Detail Info.

    • Reservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Material
    Reg No. Call No. Location Status Lend Info
    TQ0026562 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Reservations are available in the borrowing book. To make reservations, Please click the reservation button

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치