본문

서브메뉴

Engineering Hierarchical Vasculature for Regenerative Medicine- [electronic resource]
Engineering Hierarchical Vasculature for Regenerative Medicine- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016933651
International Standard Book Number  
9798379565251
Dewey Decimal Classification Number  
574
Main Entry-Personal Name  
Margolis, Emily A.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(260 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
General Note  
Advisor: Putnam, Andrew J.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Restrictions on Access Note  
This item must not be added to any third party search indexes.
Summary, Etc.  
요약In the human body, blood flows from the heart to organs and tissues through a hierarchical vascular tree, consisting of large arteries that branch into arterioles and further into capillaries where gas and nutrient exchange occur. Engineering a complete, integrated vascular hierarchy possessing vessels large enough to suture, strong enough to withstand hemodynamic forces, and a branching structure to permit immediate perfusion of a fluidic circuit across length scales would be transformative for the field of regenerative medicine, enabling the translation of engineered tissues of clinically-relevant size, and perhaps whole organs. Within the field of tissue engineering, there has been extensive research towards engineering vessels at each caliber individually, while hierarchical vasculature has been comparatively understudied. This dissertation investigated the engineering of various two-scale hierarchical vascular tissues (HVT) which were integrated to form a complete, three-scale HVT composed of capillaries, mesovessels, and a macrovessel suitable for surgical anastomosis. Aim 1 investigated the fabrication of meso-microvascular hierarchies and explored how stromal cell (SC) identity influenced endothelial cell (EC) morphogenesis and the formation of perfusable HVT. A microfluidic lab-on-a-chip system was adopted and modified to enable the formation of both microvascular capillary beds and mesovessels, and then used to evaluate inosculation between the two scales to support functional perfusion. The presence of supportive SC that can adopt perivascular phenotypes was essential, and lung fibroblasts (LF), dermal fibroblasts, and mesenchymal stem cells were compared and contrasted for their abilities to support EC morphogenesis and subsequent perfusion of the HVT. LF supported microvascular network morphologies with the highest vessel density, diameter, and interconnectivity, and were the only SC type to support functional perfusion of the hierarchy. By comparing three SC types and their abilities to support the formation of multiscale HVT, this study provided insights regarding the choice of cells for vascular cell-based therapies and highlighted the importance of SC identity in the regulation of tissue-specific vasculature. Aim 2 focused on incorporating a functional macrovessel to suture the HVT into circulation. We compared and contrasted vessels of venous, arterial, thoracic, and femoral origins for their ability to sprout EC capable of inosculating with surrounding microvasculature. We identified the thoracic aorta as the vessel yielding the greatest degree of sprouting and interconnection to surrounding capillaries and the only vessel capable of cannulation. The presence of cells undergoing vascular morphogenesis in the surrounding hydrogel attenuated EC sprouting from the macrovessel, but ultimately sprouted EC interacted with capillaries in the bulk supporting an interconnected HVT. This study yielded HVT suitable for surgical anastomosis and a platform to study vascular inosculation to provide insights for cell-based therapies. Aim 3 focused on the biomanufacturing of fibrin-based tissue engineered vascular grafts for scale-up of HVT towards translational applications avoiding the need for autologous vessel harvest. Three-layered grafts mimicking the native tunica intima, media, and adventitia composed of smooth muscle cells (media layer), LF and EC (adventitial layer), and EC only (intima layer) were successfully engineered and evaluated. Cells in the adventitial layer formed a vasa vasorum that sprouted into surrounding hydrogels that also contained microvasculature and mesovessels to support the formation of integrated HVT. Extended adventitia culture was critical for integration across length scales. Overall, this dissertation integrated top-down and bottom-up fabrication approaches towards the engineering of a complete HVT suitable for surgical anastomosis for translational regenerative medicine applications.
Subject Added Entry-Topical Term  
Cellular biology.
Subject Added Entry-Topical Term  
Biomedical engineering.
Index Term-Uncontrolled  
Vascularization
Index Term-Uncontrolled  
Tissue engineering medicine
Index Term-Uncontrolled  
Hierarchical vasculature
Index Term-Uncontrolled  
Vascular graft
Index Term-Uncontrolled  
Capillary beds
Index Term-Uncontrolled  
Mesovessels
Added Entry-Corporate Name  
University of Michigan Biomedical Engineering
Host Item Entry  
Dissertations Abstracts International. 84-12B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:640616

MARC

 008240220s2023        ulk                      00        kor
■001000016933651
■00520240214101317
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379565251
■035    ▼a(MiAaPQ)AAI30548391
■035    ▼a(MiAaPQ)umichrackham004782
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a574
■1001  ▼aMargolis,  Emily  A.
■24510▼aEngineering  Hierarchical  Vasculature  for  Regenerative  Medicine▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(260  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  84-12,  Section:  B.
■500    ▼aAdvisor:  Putnam,  Andrew  J.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■506    ▼aThis  item  must  not  be  added  to  any  third  party  search  indexes.
■520    ▼aIn  the  human  body,  blood  flows  from  the  heart  to  organs  and  tissues  through  a  hierarchical  vascular  tree,  consisting  of  large  arteries  that  branch  into  arterioles  and  further  into  capillaries  where  gas  and  nutrient  exchange  occur.  Engineering  a  complete,  integrated  vascular  hierarchy  possessing  vessels  large  enough  to  suture,  strong  enough  to  withstand  hemodynamic  forces,  and  a  branching  structure  to  permit  immediate  perfusion  of  a  fluidic  circuit  across  length  scales  would  be  transformative  for  the  field  of  regenerative  medicine,  enabling  the  translation  of  engineered  tissues  of  clinically-relevant  size,  and  perhaps  whole  organs.  Within  the  field  of  tissue  engineering,  there  has  been  extensive  research  towards  engineering  vessels  at  each  caliber  individually,  while  hierarchical  vasculature  has  been  comparatively  understudied.  This  dissertation  investigated  the  engineering  of  various  two-scale  hierarchical  vascular  tissues  (HVT)  which  were  integrated  to  form  a  complete,  three-scale  HVT  composed  of  capillaries,  mesovessels,  and  a  macrovessel  suitable  for  surgical  anastomosis.    Aim  1  investigated  the  fabrication  of  meso-microvascular  hierarchies  and  explored  how  stromal  cell  (SC)  identity  influenced  endothelial  cell  (EC)  morphogenesis  and  the  formation  of  perfusable  HVT.  A  microfluidic  lab-on-a-chip  system  was  adopted  and  modified  to  enable  the  formation  of  both  microvascular  capillary  beds  and  mesovessels,  and  then  used  to  evaluate  inosculation  between  the  two  scales  to  support  functional  perfusion.  The  presence  of  supportive  SC  that  can  adopt  perivascular  phenotypes  was  essential,  and  lung  fibroblasts  (LF),  dermal  fibroblasts,  and  mesenchymal  stem  cells  were  compared  and  contrasted  for  their  abilities  to  support  EC  morphogenesis  and  subsequent  perfusion  of  the  HVT.  LF  supported  microvascular  network  morphologies  with  the  highest  vessel  density,  diameter,  and  interconnectivity,  and  were  the  only  SC  type  to  support  functional  perfusion  of  the  hierarchy.  By  comparing  three  SC  types  and  their  abilities  to  support  the  formation  of  multiscale  HVT,  this  study  provided  insights  regarding  the  choice  of  cells  for  vascular  cell-based  therapies  and  highlighted  the  importance  of  SC  identity  in  the  regulation  of  tissue-specific  vasculature.    Aim  2  focused  on  incorporating  a  functional  macrovessel  to  suture  the  HVT  into  circulation.  We  compared  and  contrasted  vessels  of  venous,  arterial,  thoracic,  and  femoral  origins  for  their  ability  to  sprout  EC  capable  of  inosculating  with  surrounding  microvasculature.  We  identified  the  thoracic  aorta  as  the  vessel  yielding  the  greatest  degree  of  sprouting  and  interconnection  to  surrounding  capillaries  and  the  only  vessel  capable  of  cannulation.  The  presence  of  cells  undergoing  vascular  morphogenesis  in  the  surrounding  hydrogel  attenuated  EC  sprouting  from  the  macrovessel,  but  ultimately  sprouted  EC  interacted  with  capillaries  in  the  bulk  supporting  an  interconnected  HVT.  This  study  yielded  HVT  suitable  for  surgical  anastomosis  and  a  platform  to  study  vascular  inosculation  to  provide  insights  for  cell-based  therapies.    Aim  3  focused  on  the  biomanufacturing  of  fibrin-based  tissue  engineered  vascular  grafts  for  scale-up  of  HVT  towards  translational  applications  avoiding  the  need  for  autologous  vessel  harvest.  Three-layered  grafts  mimicking  the  native  tunica  intima,  media,  and  adventitia  composed  of  smooth  muscle  cells  (media  layer),  LF  and  EC  (adventitial  layer),  and  EC  only  (intima  layer)  were  successfully  engineered  and  evaluated.  Cells  in  the  adventitial  layer  formed  a  vasa  vasorum  that  sprouted  into  surrounding  hydrogels  that  also  contained  microvasculature  and  mesovessels  to  support  the  formation  of  integrated  HVT.  Extended  adventitia  culture  was  critical  for  integration  across  length  scales.  Overall,  this  dissertation  integrated  top-down  and  bottom-up  fabrication  approaches  towards  the  engineering  of  a  complete  HVT  suitable  for  surgical  anastomosis  for  translational  regenerative  medicine  applications.
■590    ▼aSchool  code:  0127.
■650  4▼aCellular  biology.
■650  4▼aBiomedical  engineering.
■653    ▼aVascularization
■653    ▼aTissue  engineering  medicine
■653    ▼aHierarchical  vasculature
■653    ▼aVascular  graft
■653    ▼aCapillary  beds
■653    ▼aMesovessels
■690    ▼a0541
■690    ▼a0379
■71020▼aUniversity  of  Michigan▼bBiomedical  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g84-12B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16933651▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    פרט מידע

    • הזמנה
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • התיקיה שלי
    גשמי
    Reg No. Call No. מיקום מצב להשאיל מידע
    TQ0026536 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * הזמנות זמינים בספר ההשאלה. כדי להזמין, נא לחץ על כפתור ההזמנה

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치