본문

서브메뉴

Determining the Mechanistic Plausibility for Acetyl-L-Carnitine as a Prognostic Biomarker in Sepsis- [electronic resource]
ข้อมูลเนื้อหา
Determining the Mechanistic Plausibility for Acetyl-L-Carnitine as a Prognostic Biomarker in Sepsis- [electronic resource]
자료유형  
 학위논문
Control Number  
0016933594
International Standard Book Number  
9798379564322
Dewey Decimal Classification Number  
612
Main Entry-Personal Name  
McCann, Marc.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(127 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
General Note  
Advisor: Stringer, Kathleen A.;Zhu, Haojie.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Restrictions on Access Note  
This item must not be added to any third party search indexes.
Summary, Etc.  
요약Sepsis is a collection of clinical signs and symptoms that is described by life-threatening organ dysfunction inflicted by the body's own response to infection. The pathophysiological origins of organ dysfunction are not well understood, but mitochondrial metabolic dysfunction has been implicated as an influential factor. Serum lactate levels, a metabolite biomarker, are currently used to evaluate metabolism in patients with sepsis. Although lactate is clinically useful in many patients, overreliance on this single metabolite obfuscates the many disturbed metabolic pathways that likely influence the progression of sepsis-induced organ dysfunction. The carnitine pool represents a family of metabolites that are well-established markers of disturbed mitochondrial fatty acid oxidation. Recently, our group and others have identified elevations in acetyl-L-carnitine (C2) as the acylcarnitine with the most robust associations with sepsis-induced organ dysfunction, mortality, infection, and inflammation. The focus of the dissertation was to establish connections between C2 and various markers of mitochondrial dysfunction to mechanistically credential C2 as a candidate biomarker by expanding the metabolic interpretation of the signal in sepsis. Developing multiple linear regression models with stepwise forward-backward variable selection, I identified metabolite signatures that were significantly associated with platelet derived mitochondrial oxygen consumption rates. One of the models included a negative association between whole blood C2 concentrations and baseline mitochondrial oxygen consumption rate, indicating that elevated C2 in the blood could represent lower mitochondrial function. Leveraging serum baseline concentration data from patients with septic shock, I identified a relationship between mortality and measurements of C2 and individual intermediates of the tricarboxylic acid (TCA) cycle, a key step in energy production via oxidative phosphorylation. I used multiple linear regression models to determine that septic shock non-survivors at 28-days and 1-year had a stronger relationship between C2 and malate, when compared to survivors. I also employed a mouse model of sepsis in conjunction with data from human sepsis and septic shock cohorts to characterize the tandem progression of sepsis-induced organ dysfunction and metabolic disturbances that present throughout sepsis. In the sepsis mouse model, I observed whole blood measurements of L-carnitine (LC) and the C2/LC ratio were decreased and increased, respectively, in the septic animals compared to the controls. This finding suggests that measuring carnitine metabolism has diagnostic value as an early predictor of sepsis. Analysis of the human cohorts revealed perturbations in the carnitine pool (LC, C2, C2/LC) were present and positively associated with various assessments of organ dysfunction. I also discovered perturbed metabolic pathways in the kidneys and livers of the septic animals that precede widespread, clinically detectable organ dysfunction and damage. Many of these organ metabolite signatures were correlated to changes in the whole blood C2/LC ratio, suggesting the whole blood C2/LC ratio reflects a broad range of metabolic abnormalities at the organ level. Additionally, several of the sepsis-induced organ metabolic disturbances in the animals were detected and associated with organ dysfunction in the human cohorts, including histidine, malate, alanine, glutamate, aspartate, lactate, and glutamine. These findings provide a mechanistic link between the metabolic response with the onset and progression of sepsis-induced organ dysfunction. Overall, various markers of mitochondrial metabolic dysfunction were found to have profound connections to blood measurements of C2. This work provided evidence to support the use of C2 as a candidate biomarker for the comprehensive assessment of metabolism in patients with sepsis.
Subject Added Entry-Topical Term  
Pharmaceutical sciences.
Subject Added Entry-Topical Term  
Physiology.
Subject Added Entry-Topical Term  
Biomedical engineering.
Index Term-Uncontrolled  
Metabolomics
Index Term-Uncontrolled  
Sepsis biomarker
Index Term-Uncontrolled  
Precision medicine
Index Term-Uncontrolled  
Mitochondrial function
Added Entry-Corporate Name  
University of Michigan Clinical Pharmacy Translational Science
Host Item Entry  
Dissertations Abstracts International. 84-12B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:640599
New Books MORE
최근 3년간 통계입니다.

ค้นหาข้อมูลรายละเอียด

  • จองห้องพัก
  • 캠퍼스간 도서대출
  • 서가에 없는 책 신고
  • โฟลเดอร์ของฉัน
วัสดุ
Reg No. Call No. ตำแหน่งที่ตั้ง สถานะ ยืมข้อมูล
TQ0026519 T   원문자료 열람가능/출력가능 열람가능/출력가능
마이폴더 부재도서신고

* จองมีอยู่ในหนังสือยืม เพื่อให้การสำรองที่นั่งคลิกที่ปุ่มจองห้องพัก

해당 도서를 다른 이용자가 함께 대출한 도서

Related books

Related Popular Books

도서위치