본문

서브메뉴

Advanced Techniques for Spectral and Temporal Ultrashort Pulse Synthesis in Coherent Pulse Stacking Amplification- [electronic resource]
Advanced Techniques for Spectral and Temporal Ultrashort Pulse Synthesis in Coherent Pulse Stacking Amplification- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016933703
International Standard Book Number  
9798379566647
Dewey Decimal Classification Number  
621.3
Main Entry-Personal Name  
Whittlesey, Mathew.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(104 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
General Note  
Advisor: Galvanauskas, Almantas.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Restrictions on Access Note  
This item must not be added to any third party search indexes.
Summary, Etc.  
요약Coherent combining methods enable scaling of average power and peak power in fiber laser systems. Coherent pulse stacking has the potential to enable high repetition rate laser-matter interactions by extending the effective pulse duration, enabling near-complete energy extraction from a fiber amplifier. This, along with coherent beam combining, provides a promising path to achieve efficient high-repetition rate laser sources for laser-matter interactions. This thesis explores the adaptable nature of coherent pulse stacking, and develops techniques to achieve repeatable, robust high-efficiency stacking. It also demonstrates, for the first time, simultaneous coherent spatial combining and coherent pulse stacking amplification. Coherent pulse stacking was analyzed, and shown to be mathematically equivalent to a deep recurrent neural network. Different pulse amplitude profiles were shown to have minimal stacking loss, which demonstrates the adaptable nature of the technique. A method for increasing pre-pulse contrast by allowing post-pulses at the cost of efficiency was further developed and explored for equal-amplitude and equal nonlinear phase burst shapes. The impact of stacking parameter errors was quantified, and required tolerances for these parameters were derived. These analyses show stacking designs with 30 dB pre-pulse contrast and 95% stacking efficiency. A theoretical framework for accounting effects of stacking alignment errors was developed, which enabled quantification of tilt and piston error impact on stacking efficiency via numerical simulations. This enabled determination of required alignment accuracies for achieving high efficiency stacking. Alignment methods to meet the required tolerances for both tilt and piston errors were developed and implemented, achieving 5 µrad tilt accuracy and 2 µm piston accuracy and speeding up alignment. Additionally, oscillator repetition rate was locked to a highly stable rubidium frequency standard, eliminating oscillator cavity drift. In aggregate, all these technical advances significantly decreased system drift and enabled robust and stable stacking operation. As a result, high efficiency stacking of 80% stacking efficiency was achieved with high repeatability, robustness, and stability of 1% RMS. Simultaneous coherent beam combining and coherent pulse stacking amplification was demonstrated for the first time. A record-high ultrashort pulse energy of 7 mJ per fiber was coherently spatially combined in a four-channel fiber array with a total energy of ~25 mJ, and stacked into a single output pulse with stacking efficiency of 70%. Stacking performance at these energies was shown to be stable and robust over long durations, with stabilization noise of 2.2% RMS. Stacking was shown to not affect compressed pulse duration, and stabilization of coherent beam combining was shown to not impact stacking efficiency. This represents a milestone in the development of coherently combined fiber lasers, enabling further scaling towards 100 mJ and beyond. Finally, a technique to synthesize flat-top bandwidth-limited pulses using coherent spectral combining is developed. This method is directly compatible with other coherent combining techniques, which enables future scaling to high energies for generation of quasi-monoenergetic gamma photons via Thomson scattering. Spectral synthesis of the required spectrum is demonstrated with five spectral channels in a chirped pulse amplification system, and techniques for phase stabilization of spectral channels are developed. In summary, this thesis work expands the understanding of coherent combining techniques, both spectral and temporal, and shows the adaptable nature of coherent pulse stacking. When the techniques developed are used, high-energy high repetition rate laser sources are shown to be practically implementable via coherent combining techniques.
Subject Added Entry-Topical Term  
Electrical engineering.
Subject Added Entry-Topical Term  
Optics.
Index Term-Uncontrolled  
Fiber lasers
Index Term-Uncontrolled  
Coherent combining
Index Term-Uncontrolled  
Pulse synthesis
Index Term-Uncontrolled  
Pulse stacking
Index Term-Uncontrolled  
Amplification
Added Entry-Corporate Name  
University of Michigan Electrical and Computer Engineering
Host Item Entry  
Dissertations Abstracts International. 84-12B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:640563

MARC

 008240220s2023        ulk                      00        kor
■001000016933703
■00520240214101325
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379566647
■035    ▼a(MiAaPQ)AAI30548568
■035    ▼a(MiAaPQ)umichrackham004910
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a621.3
■1001  ▼aWhittlesey,  Mathew.
■24510▼aAdvanced  Techniques  for  Spectral  and  Temporal  Ultrashort  Pulse  Synthesis  in  Coherent  Pulse  Stacking  Amplification▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(104  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  84-12,  Section:  B.
■500    ▼aAdvisor:  Galvanauskas,  Almantas.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■506    ▼aThis  item  must  not  be  added  to  any  third  party  search  indexes.
■520    ▼aCoherent  combining  methods  enable  scaling  of  average  power  and  peak  power  in  fiber  laser  systems.  Coherent  pulse  stacking  has  the  potential  to  enable  high  repetition  rate  laser-matter  interactions  by  extending  the  effective  pulse  duration,  enabling  near-complete  energy  extraction  from  a  fiber  amplifier.  This,  along  with  coherent  beam  combining,  provides  a  promising  path  to  achieve  efficient  high-repetition  rate  laser  sources  for  laser-matter  interactions.  This  thesis  explores  the  adaptable  nature  of  coherent  pulse  stacking,  and  develops  techniques  to  achieve  repeatable,  robust  high-efficiency  stacking.  It  also  demonstrates,  for  the  first  time,  simultaneous  coherent  spatial  combining  and  coherent  pulse  stacking  amplification.  Coherent  pulse  stacking  was  analyzed,  and  shown  to  be  mathematically  equivalent  to  a  deep  recurrent  neural  network.  Different  pulse  amplitude  profiles  were  shown  to  have  minimal  stacking  loss,  which  demonstrates  the  adaptable  nature  of  the  technique.  A  method  for  increasing  pre-pulse  contrast  by  allowing  post-pulses  at  the  cost  of  efficiency  was  further  developed  and  explored  for  equal-amplitude  and  equal  nonlinear  phase  burst  shapes.  The  impact  of  stacking  parameter  errors  was  quantified,  and  required  tolerances  for  these  parameters  were  derived.  These  analyses  show  stacking  designs  with  30  dB  pre-pulse  contrast  and  95%  stacking  efficiency.  A  theoretical  framework  for  accounting  effects  of  stacking  alignment  errors  was  developed,  which  enabled  quantification  of  tilt  and  piston  error  impact  on  stacking  efficiency  via  numerical  simulations.  This  enabled  determination  of  required  alignment  accuracies  for  achieving  high  efficiency  stacking.  Alignment  methods  to  meet  the  required  tolerances  for  both  tilt  and  piston  errors  were  developed  and  implemented,  achieving  5  µrad  tilt  accuracy  and  2  µm  piston  accuracy  and  speeding  up  alignment.  Additionally,  oscillator  repetition  rate  was  locked  to  a  highly  stable  rubidium  frequency  standard,  eliminating  oscillator  cavity  drift.  In  aggregate,  all  these  technical  advances  significantly  decreased  system  drift  and  enabled  robust  and  stable  stacking  operation.  As  a  result,  high  efficiency  stacking  of  80%  stacking  efficiency  was  achieved  with  high  repeatability,  robustness,  and  stability  of  1%  RMS.  Simultaneous  coherent  beam  combining  and  coherent  pulse  stacking  amplification  was  demonstrated  for  the  first  time.  A  record-high  ultrashort  pulse  energy  of  7  mJ  per  fiber  was  coherently  spatially  combined  in  a  four-channel  fiber  array  with  a  total  energy  of  ~25  mJ,  and  stacked  into  a  single  output  pulse  with  stacking  efficiency  of  70%.  Stacking  performance  at  these  energies  was  shown  to  be  stable  and  robust  over  long  durations,  with  stabilization  noise  of  2.2%  RMS.  Stacking  was  shown  to  not  affect  compressed  pulse  duration,  and  stabilization  of  coherent  beam  combining  was  shown  to  not  impact  stacking  efficiency.  This  represents  a  milestone  in  the  development  of  coherently  combined  fiber  lasers,  enabling  further  scaling  towards  100  mJ  and  beyond.  Finally,  a  technique  to  synthesize  flat-top  bandwidth-limited  pulses  using  coherent  spectral  combining  is  developed.  This  method  is  directly  compatible  with  other  coherent  combining  techniques,  which  enables  future  scaling  to  high  energies  for  generation  of  quasi-monoenergetic  gamma  photons  via  Thomson  scattering.  Spectral  synthesis  of  the  required  spectrum  is  demonstrated  with  five  spectral  channels  in  a  chirped  pulse  amplification  system,  and  techniques  for  phase  stabilization  of  spectral  channels  are  developed.  In  summary,  this  thesis  work  expands  the  understanding  of  coherent  combining  techniques,  both  spectral  and  temporal,  and  shows  the  adaptable  nature  of  coherent  pulse  stacking.  When  the  techniques  developed  are  used,  high-energy  high  repetition  rate  laser  sources  are  shown  to  be  practically  implementable  via  coherent  combining  techniques.
■590    ▼aSchool  code:  0127.
■650  4▼aElectrical  engineering.
■650  4▼aOptics.
■653    ▼aFiber  lasers
■653    ▼aCoherent  combining
■653    ▼aPulse  synthesis
■653    ▼aPulse  stacking
■653    ▼aAmplification
■690    ▼a0752
■690    ▼a0544
■71020▼aUniversity  of  Michigan▼bElectrical  and  Computer  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g84-12B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16933703▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0026488 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치