본문

서브메뉴

Dynamics of Rotating Structures in a Magnetized Plasma Discharge- [electronic resource]
Dynamics of Rotating Structures in a Magnetized Plasma Discharge- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016931976
International Standard Book Number  
9798379653583
Dewey Decimal Classification Number  
770
Main Entry-Personal Name  
Marcovati, Andrea.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(176 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
General Note  
Advisor: Hara, Ken;Raitses, Yevgeny;Cappelli, Mark.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Azimuthally propagating instabilities, in the form of regions of higher plasma density, are sometimes seen propagate in Hall thrusters and other magnetized discharges. These structures, termed spokes, have been linked to an increase in axial electron mobility and are thought to play a role in breathing mode oscillations that are known to lead to unsteady behaviour and premature shutdown. The goal of this work is to understand the physics behind the spokes and study the conditions for their formation and control their propagation.Two small ring-shaped magnetized discharges (5 mm and 19 mm in diameter) form inside two configurations, that differ only in size, of a device designed to promote the exclusive growth of the same spokes observed in Hall thrusters while being much easier to operate. Two main diagnostic techniques are used: high-speed imaging, through a transparent layer of Indium Tin Oxide (ITO) constituting the anode, and anode segmentation current measurements, obtained by segmenting the anode into electrically isolated regions. Both diagnostic techniques reveal the presence of spokes azimuthally propagating along the discharge ring in the frequency range 100 kHz to 10 MHz when operating with argon gas. A spectral analysis of the current traces using wavelet decomposition reveals the presence of higher-order harmonics, undetectable by the camera, which are sometimes observed propagating at the same phase velocity as the spokes under conditions of high obstruction.A theoretical framework is developed to model the propagation of the spokes as a saturated instability wave. The linear perturbation analysis of the equations leads to an analytical form of the wave dispersion relation which reveals the instability conditions and is shown to be in agreement with experimental results. The different magnetization states of electrons and ions is identified to be the cause of the formation of the instability while the presence of property gradients is shown to provide the "free energy" that enables the instability to grow into distinct structures.Experimentally, operating conditions are varied to characterize how the propagation of these plasma structures is influenced by the various parameters. Discharge current and distance between electrodes are found to be the parameters to which their propagation is most sensitive. At lower currents and distance between electrode plates, the propagation of the spokes is observed to be in the negative E x B direction, defined by the applied magnetic and electric fields with the latter assumed to be cathode-bound. Two distinct regimes are identified at low and high currents promoting negative and positive E xB propagating instabilities respectively. Conditions are varied to characterize how the threshold current, that separates the two regimes, varies with distance between electrodes and background pressure. The V-I characteristics obtained for the large magnetron configuration reveal a negative electrical resistance at lower currents that is believed to be caused by an anomalous flux of anodebound ions which contributes negatively to the total current. A theoretical model suggests this rotation inversion to be caused by the large density gradients that are promoted by low currents and can lead to an inversion of the local electric field. Furthermore, the model suggests that the local inverted electric field increases in magnitude when the discharge current is decreased which leads to a higher anomalous ion flux at lower currents which can explain the negative electrical resistance.
Subject Added Entry-Topical Term  
Cameras.
Subject Added Entry-Topical Term  
Viscosity.
Subject Added Entry-Topical Term  
Charged particles.
Subject Added Entry-Topical Term  
Magnetic fields.
Subject Added Entry-Topical Term  
Electric fields.
Subject Added Entry-Topical Term  
Laser etching.
Subject Added Entry-Topical Term  
Plasma etching.
Subject Added Entry-Topical Term  
Atomic physics.
Subject Added Entry-Topical Term  
Electromagnetics.
Subject Added Entry-Topical Term  
Physics.
Subject Added Entry-Topical Term  
Plasma physics.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 84-12B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:640526

MARC

 008240220s2023        ulk                      00        kor
■001000016931976
■00520240214100355
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379653583
■035    ▼a(MiAaPQ)AAI30462695
■035    ▼a(MiAaPQ)STANFORDxc308gw6135
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a770
■1001  ▼aMarcovati,  Andrea.
■24510▼aDynamics  of  Rotating  Structures  in  a  Magnetized  Plasma  Discharge▼h[electronic  resource]
■260    ▼a[S.l.]▼bStanford  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(176  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  84-12,  Section:  B.
■500    ▼aAdvisor:  Hara,  Ken;Raitses,  Yevgeny;Cappelli,  Mark.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aAzimuthally  propagating  instabilities,  in  the  form  of  regions  of  higher  plasma  density,  are  sometimes  seen  propagate  in  Hall  thrusters  and  other  magnetized  discharges.  These  structures,  termed  spokes,  have  been  linked  to  an  increase  in  axial  electron  mobility  and  are  thought  to  play  a  role  in  breathing  mode  oscillations  that  are  known  to  lead  to  unsteady  behaviour  and  premature  shutdown.  The  goal  of  this  work  is  to  understand  the  physics  behind  the  spokes  and  study  the  conditions  for  their  formation  and  control  their  propagation.Two  small  ring-shaped  magnetized  discharges  (5  mm  and  19  mm  in  diameter)  form  inside  two  configurations,  that  differ  only  in  size,  of  a  device  designed  to  promote  the  exclusive  growth  of  the  same  spokes  observed  in  Hall  thrusters  while  being  much  easier  to  operate.  Two  main  diagnostic  techniques  are  used:  high-speed  imaging,  through  a  transparent  layer  of  Indium  Tin  Oxide  (ITO)  constituting  the  anode,  and  anode  segmentation  current  measurements,  obtained  by  segmenting  the  anode  into  electrically  isolated  regions.  Both  diagnostic  techniques  reveal  the  presence  of  spokes  azimuthally  propagating  along  the  discharge  ring  in  the  frequency  range  100  kHz  to  10  MHz  when  operating  with  argon  gas.  A  spectral  analysis  of  the  current  traces  using  wavelet  decomposition  reveals  the  presence  of  higher-order  harmonics,  undetectable  by  the  camera,  which  are  sometimes  observed  propagating  at  the  same  phase  velocity  as  the  spokes  under  conditions  of  high  obstruction.A  theoretical  framework  is  developed  to  model  the  propagation  of  the  spokes  as  a  saturated  instability  wave.  The  linear  perturbation  analysis  of  the  equations  leads  to  an  analytical  form  of  the  wave  dispersion  relation  which  reveals  the  instability  conditions  and  is  shown  to  be  in  agreement  with  experimental  results.  The  different  magnetization  states  of  electrons  and  ions  is  identified  to  be  the  cause  of  the  formation  of  the  instability  while  the  presence  of  property  gradients  is  shown  to  provide  the  "free  energy"  that  enables  the  instability  to  grow  into  distinct  structures.Experimentally,  operating  conditions  are  varied  to  characterize  how  the  propagation  of  these  plasma  structures  is  influenced  by  the  various  parameters.  Discharge  current  and  distance  between  electrodes  are  found  to  be  the  parameters  to  which  their  propagation  is  most  sensitive.  At  lower  currents  and  distance  between  electrode  plates,  the  propagation  of  the  spokes  is  observed  to  be  in  the  negative  E  x  B  direction,  defined  by  the  applied  magnetic  and  electric  fields  with  the  latter  assumed  to  be  cathode-bound.  Two  distinct  regimes  are  identified  at  low  and  high  currents  promoting  negative  and  positive  E  xB  propagating  instabilities  respectively.  Conditions  are  varied  to  characterize  how  the  threshold  current,  that  separates  the  two  regimes,  varies  with  distance  between  electrodes  and  background  pressure.  The  V-I  characteristics  obtained  for  the  large  magnetron  configuration  reveal  a  negative  electrical  resistance  at  lower  currents  that  is  believed  to  be  caused  by  an  anomalous  flux  of  anodebound  ions  which  contributes  negatively  to  the  total  current.  A  theoretical  model  suggests  this  rotation  inversion  to  be  caused  by  the  large  density  gradients  that  are  promoted  by  low  currents  and  can  lead  to  an  inversion  of  the  local  electric  field.  Furthermore,  the  model  suggests  that  the  local  inverted  electric  field  increases  in  magnitude  when  the  discharge  current  is  decreased  which  leads  to  a  higher  anomalous  ion  flux  at  lower  currents  which  can  explain  the  negative  electrical  resistance.
■590    ▼aSchool  code:  0212.
■650  4▼aCameras.
■650  4▼aViscosity.
■650  4▼aCharged  particles.
■650  4▼aMagnetic  fields.
■650  4▼aElectric  fields.
■650  4▼aLaser  etching.
■650  4▼aPlasma  etching.
■650  4▼aAtomic  physics.
■650  4▼aElectromagnetics.
■650  4▼aPhysics.
■650  4▼aPlasma  physics.
■690    ▼a0748
■690    ▼a0607
■690    ▼a0605
■690    ▼a0759
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g84-12B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16931976▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    詳細情報

    • 予約
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 私のフォルダ
    資料
    登録番号 請求記号 場所 ステータス 情報を貸す
    TQ0026446 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *ご予約は、借入帳でご利用いただけます。予約をするには、予約ボタンをクリックしてください

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치