본문

서브메뉴

Minmax Optimization: New Applications and Algorithms- [electronic resource]
Minmax Optimization: New Applications and Algorithms- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016932466
International Standard Book Number  
9798380154086
Dewey Decimal Classification Number  
621.3
Main Entry-Personal Name  
Chinchilla, Raphael.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of California, Santa Barbara., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(156 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-02, Section: B.
General Note  
Advisor: Hespanha, Joao P.
Dissertation Note  
Thesis (Ph.D.)--University of California, Santa Barbara, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Minmax optimization is a powerful framework to model optimization problems for which there is uncertainty with respect to some parameters. In this dissertation we look at new applications of minmax optimization and at new algorithms to solve the optimizations.The new applications revolve around a connection we have developed between minmax optimization and the problem of minimizing an expected value with stochastic constraints, known in the literature as stochastic programming. Our approach is based on obtaining sub-optimal solutions to the stochastic program by optimizing bounds for the expected value that are obtained by solving a deterministic minmax optimization problem that uses the probability density function to penalize unlikely values for the random variables. We illustrate this approach in the context of three applications: finite horizon optimal stochastic control, with state or output feedback; parameter estimation with latent variables; and nonlinear Bayesian experiment design.As for new algorithms, they are aimed at addressing the problem of finding a local solution to a nonconvex-nonconcave minmax optimization. We propose two main algorithms. The first category of algorithms are modified Newton methods for unconstrained and constrained minmax optimization. Our main contribution is to modify the Hessian matrix of these methods such that, at each step, the modified Newton update direction can be seen as the solution to a quadratic program that locally approximates the minmax problem. Moreover, we show that by selecting the modification in an appropriate way, the only stable points of the algorithm's iterations are local minmax points. The second category of algorithms are a variation of the learning with opponent learning awareness (LOLA) method, which we call Full LOLA. The rationale of (Full) LOLA is to construct algorithms such that the minimizer and maximizer choose their update direction taking into account the response of their adversary to their choice. The relation between our method and LOLA is that the latter can be seen as a first order linearization of the Full LOLA. We show that it is possible to establish asymptotic convergence results for our method both using fix step length and a variation of the Armijo rule.
Subject Added Entry-Topical Term  
Electrical engineering.
Index Term-Uncontrolled  
Control
Index Term-Uncontrolled  
Minmax optimization
Index Term-Uncontrolled  
Newton method
Index Term-Uncontrolled  
Optimization
Index Term-Uncontrolled  
Stochastic optimization
Index Term-Uncontrolled  
Stochastic programming
Added Entry-Corporate Name  
University of California, Santa Barbara Electrical & Computer Engineering
Host Item Entry  
Dissertations Abstracts International. 85-02B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:640398

MARC

 008240220s2023        ulk                      00        kor
■001000016932466
■00520240214100502
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380154086
■035    ▼a(MiAaPQ)AAI30492970
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a621.3
■1001  ▼aChinchilla,  Raphael.
■24510▼aMinmax  Optimization:  New  Applications  and  Algorithms▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  California,  Santa  Barbara.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(156  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-02,  Section:  B.
■500    ▼aAdvisor:  Hespanha,  Joao  P.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  Santa  Barbara,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aMinmax  optimization  is  a  powerful  framework  to  model  optimization  problems  for  which  there  is  uncertainty  with  respect  to  some  parameters.  In  this  dissertation  we  look  at  new  applications  of  minmax  optimization  and  at  new  algorithms  to  solve  the  optimizations.The  new  applications  revolve  around  a  connection  we  have  developed  between  minmax  optimization  and  the  problem  of  minimizing  an  expected  value  with  stochastic  constraints,  known  in  the  literature  as  stochastic  programming.  Our  approach  is  based  on  obtaining  sub-optimal  solutions  to  the  stochastic  program  by  optimizing  bounds  for  the  expected  value  that  are  obtained  by  solving  a  deterministic  minmax  optimization  problem  that  uses  the  probability  density  function  to  penalize  unlikely  values  for  the  random  variables.  We  illustrate  this  approach  in  the  context  of  three  applications:  finite  horizon  optimal  stochastic  control,  with  state  or  output  feedback;  parameter  estimation  with  latent  variables;  and  nonlinear  Bayesian  experiment  design.As  for  new  algorithms,  they  are  aimed  at  addressing  the  problem  of  finding  a  local  solution  to  a  nonconvex-nonconcave  minmax  optimization.  We  propose  two  main  algorithms.  The  first  category  of  algorithms  are  modified  Newton  methods  for  unconstrained  and  constrained  minmax  optimization.  Our  main  contribution  is  to  modify  the  Hessian  matrix  of  these  methods  such  that,  at  each  step,  the  modified  Newton  update  direction  can  be  seen  as  the  solution  to  a  quadratic  program  that  locally  approximates  the  minmax  problem.  Moreover,  we  show  that  by  selecting  the  modification  in  an  appropriate  way,  the  only  stable  points  of  the  algorithm's  iterations  are  local  minmax  points.  The  second  category  of  algorithms  are  a  variation  of  the  learning  with  opponent  learning  awareness  (LOLA)  method,  which  we  call  Full  LOLA.  The  rationale  of  (Full)  LOLA  is  to  construct  algorithms  such  that  the  minimizer  and  maximizer  choose  their  update  direction  taking  into  account  the  response  of  their  adversary  to  their  choice.  The  relation  between  our  method  and  LOLA  is  that  the  latter  can  be  seen  as  a  first  order  linearization  of  the  Full  LOLA.  We  show  that  it  is  possible  to  establish  asymptotic  convergence  results  for  our  method  both  using  fix  step  length  and  a  variation  of  the  Armijo  rule.
■590    ▼aSchool  code:  0035.
■650  4▼aElectrical  engineering.
■653    ▼aControl
■653    ▼aMinmax  optimization
■653    ▼aNewton  method
■653    ▼aOptimization
■653    ▼aStochastic  optimization
■653    ▼aStochastic  programming
■690    ▼a0544
■690    ▼a0800
■71020▼aUniversity  of  California,  Santa  Barbara▼bElectrical  &  Computer  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g85-02B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0035
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16932466▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    詳細情報

    • 予約
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 私のフォルダ
    資料
    登録番号 請求記号 場所 ステータス 情報を貸す
    TQ0026318 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *ご予約は、借入帳でご利用いただけます。予約をするには、予約ボタンをクリックしてください

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치