본문

서브메뉴

Two Biostatistical Problems- [electronic resource]
Two Biostatistical Problems- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016935534
International Standard Book Number  
9798380370981
Dewey Decimal Classification Number  
574
Main Entry-Personal Name  
Chase, Elizabeth Crenshaw.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(177 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-03, Section: B.
General Note  
Advisor: Boonstra, Philip S.;Taylor, Jeremy M. G.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Restrictions on Access Note  
This item must not be added to any third party search indexes.
Summary, Etc.  
요약This dissertation examines two problems in biostatistics. The first and second projects develop horseshoe process regression (HPR), a Bayesian nonparametric model that uses statistical shrinkage to capture abruptly changing associations between a continuous predictor and some outcome. We use HPR to model women's basal body temperature (BBT) across the menstrual cycle. In contrast, the third project proposes a nonparametric multiple imputation approach to estimating the cumulative incidence, a key descriptive statistic in survival analysis. Focusing on the first project, we state the truism: biomedical data often exhibit jumps or abrupt changes. These sudden changes make these data challenging to model, as many methods will oversmooth the sharp changes or overfit in response to measurement error. We develop HPR to address this problem. We define a horseshoe process as a stochastic process in which each increment is horseshoe-distributed. We use the horseshoe process as a nonparametric Bayesian prior for modeling an association between an outcome and its continuous predictor. We provide guidance and extensions to advance HPR's use in applied practice: we introduce a Bayesian imputation scheme to allow for interpolation at unobserved values of the predictor within the HPR; include additional covariates via a partial linear model framework; and allow for monotonicity constraints. We find that HPR performs well when fitting functions that have sharp changes, and we use it to model women's BBT over the course of the menstrual cycle. In the second project, we focus on using HPR for one particular type of abruptly changing data: BBT over the course of the menstrual cycle. Women's BBT exhibits abrupt changes at the time of ovulation and menstruation, which many methods struggle to capture. While in the first project we demonstrated that HPR had potential for modeling BBT, in the second project we tailor HPR for this setting. We re-implement HPR using variational inference to speed computation time, which we show offers comparable results to those provided by Hamiltonian Monte Carlo in the first project. We incorporate ovulation pattern into the HPR model, to provide posterior estimates of ovulation day and its uncertainty. We consider a posterior-prior passing scheme in order to share information across cycles. We use this BBT-specific version of HPR (HPR-BBT), to analyze BBT data from a large cohort of British women. Overall, HPR-BBT offers sensible estimates of ovulation day and BBT trajectory. And now for something completely different: the third project. We propose an alternative approach to the Aalen-Johansen estimator of the cumulative incidence. Rather than calculate the cumulative incidence directly, we instead perform nonparametric multiple imputation to generate event times and types for censored individuals. Thus, on each imputation, all participants are "observed" to have an event. Calculating the cumulative incidence on each imputation is then merely estimating a proportion at each timepoint, and yields point and uncertainty estimates that can be aggregated across imputations via Rubin's Rules. The resulting multiple imputation estimator is mathematically and empirically shown to generate equivalent point estimates to the Aalen-Johansen estimator as the number of imputations increases; in addition, the multiple imputation estimator offers improved options for uncertainty estimation. We discuss connections to redistribute-to-the-right algorithms and other imputation approaches for survival analysis.
Subject Added Entry-Topical Term  
Biostatistics.
Subject Added Entry-Topical Term  
Statistics.
Subject Added Entry-Topical Term  
Bioinformatics.
Index Term-Uncontrolled  
Statistical shrinkage
Index Term-Uncontrolled  
Bayesian statistics
Index Term-Uncontrolled  
Stochastic processes
Index Term-Uncontrolled  
Competing risks
Index Term-Uncontrolled  
Cumulative incidence
Index Term-Uncontrolled  
Nonparametric multiple imputation
Added Entry-Corporate Name  
University of Michigan Biostatistics
Host Item Entry  
Dissertations Abstracts International. 85-03B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:640340

MARC

 008240220s2023        ulk                      00        kor
■001000016935534
■00520240214101944
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380370981
■035    ▼a(MiAaPQ)AAI30747492
■035    ▼a(MiAaPQ)umichrackham005005
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a574
■1001  ▼aChase,  Elizabeth  Crenshaw.
■24510▼aTwo  Biostatistical  Problems▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(177  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-03,  Section:  B.
■500    ▼aAdvisor:  Boonstra,  Philip  S.;Taylor,  Jeremy  M.  G.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■506    ▼aThis  item  must  not  be  added  to  any  third  party  search  indexes.
■520    ▼aThis  dissertation  examines  two  problems  in  biostatistics.  The  first  and  second  projects  develop  horseshoe  process  regression  (HPR),  a  Bayesian  nonparametric  model  that  uses  statistical  shrinkage  to  capture  abruptly  changing  associations  between  a  continuous  predictor  and  some  outcome.  We  use  HPR  to  model  women's  basal  body  temperature  (BBT)  across  the  menstrual  cycle.  In  contrast,  the  third  project  proposes  a  nonparametric  multiple  imputation  approach  to  estimating  the  cumulative  incidence,  a  key  descriptive  statistic  in  survival  analysis.  Focusing  on  the  first  project,  we  state  the  truism:  biomedical  data  often  exhibit  jumps  or  abrupt  changes.  These  sudden  changes  make  these  data  challenging  to  model,  as  many  methods  will  oversmooth  the  sharp  changes  or  overfit  in  response  to  measurement  error.  We  develop  HPR  to  address  this  problem.  We  define  a  horseshoe  process  as  a  stochastic  process  in  which  each  increment  is  horseshoe-distributed.  We  use  the  horseshoe  process  as  a  nonparametric  Bayesian  prior  for  modeling  an  association  between  an  outcome  and  its  continuous  predictor.  We  provide  guidance  and  extensions  to  advance  HPR's  use  in  applied  practice:  we  introduce  a  Bayesian  imputation  scheme  to  allow  for  interpolation  at  unobserved  values  of  the  predictor  within  the  HPR;  include  additional  covariates  via  a  partial  linear  model  framework;  and  allow  for  monotonicity  constraints.  We  find  that  HPR  performs  well  when  fitting  functions  that  have  sharp  changes,  and  we  use  it  to  model  women's  BBT  over  the  course  of  the  menstrual  cycle.  In  the  second  project,  we  focus  on  using  HPR  for  one  particular  type  of  abruptly  changing  data:  BBT  over  the  course  of  the  menstrual  cycle.  Women's  BBT  exhibits  abrupt  changes  at  the  time  of  ovulation  and  menstruation,  which  many  methods  struggle  to  capture.  While  in  the  first  project  we  demonstrated  that  HPR  had  potential  for  modeling  BBT,  in  the  second  project  we  tailor  HPR  for  this  setting.  We  re-implement  HPR  using  variational  inference  to  speed  computation  time,  which  we  show  offers  comparable  results  to  those  provided  by  Hamiltonian  Monte  Carlo  in  the  first  project.  We  incorporate  ovulation  pattern  into  the  HPR  model,  to  provide  posterior  estimates  of  ovulation  day  and  its  uncertainty.  We  consider  a  posterior-prior  passing  scheme  in  order  to  share  information  across  cycles.  We  use  this  BBT-specific  version  of  HPR  (HPR-BBT),  to  analyze  BBT  data  from  a  large  cohort  of  British  women.  Overall,  HPR-BBT  offers  sensible  estimates  of  ovulation  day  and  BBT  trajectory.  And  now  for  something  completely  different:  the  third  project.  We  propose  an  alternative  approach  to  the  Aalen-Johansen  estimator  of  the  cumulative  incidence.  Rather  than  calculate  the  cumulative  incidence  directly,  we  instead  perform  nonparametric  multiple  imputation  to  generate  event  times  and  types  for  censored  individuals.  Thus,  on  each  imputation,  all  participants  are  "observed"  to  have  an  event.  Calculating  the  cumulative  incidence  on  each  imputation  is  then  merely  estimating  a  proportion  at  each  timepoint,  and  yields  point  and  uncertainty  estimates  that  can  be  aggregated  across  imputations  via  Rubin's  Rules.  The  resulting  multiple  imputation  estimator  is  mathematically  and  empirically  shown  to  generate  equivalent  point  estimates  to  the  Aalen-Johansen  estimator  as  the  number  of  imputations  increases;  in  addition,  the  multiple  imputation  estimator  offers  improved  options  for  uncertainty  estimation.  We  discuss  connections  to  redistribute-to-the-right  algorithms  and  other  imputation  approaches  for  survival  analysis.
■590    ▼aSchool  code:  0127.
■650  4▼aBiostatistics.
■650  4▼aStatistics.
■650  4▼aBioinformatics.
■653    ▼aStatistical  shrinkage
■653    ▼aBayesian  statistics
■653    ▼aStochastic  processes
■653    ▼aCompeting  risks
■653    ▼aCumulative  incidence
■653    ▼aNonparametric  multiple  imputation
■690    ▼a0308
■690    ▼a0715
■690    ▼a0463
■71020▼aUniversity  of  Michigan▼bBiostatistics.
■7730  ▼tDissertations  Abstracts  International▼g85-03B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16935534▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    詳細情報

    • 予約
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 私のフォルダ
    資料
    登録番号 請求記号 場所 ステータス 情報を貸す
    TQ0026263 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *ご予約は、借入帳でご利用いただけます。予約をするには、予約ボタンをクリックしてください

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치