본문

서브메뉴

Asymmetric Halo Current Rotation in Post-Disruption Plasmas- [electronic resource]
내용보기
Asymmetric Halo Current Rotation in Post-Disruption Plasmas- [electronic resource]
자료유형  
 학위논문
Control Number  
0016933359
International Standard Book Number  
9798379793159
Dewey Decimal Classification Number  
530
Main Entry-Personal Name  
Saperstein, Alex R. .
Publication, Distribution, etc. (Imprint  
[S.l.] : Columbia University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(183 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
General Note  
Advisor: Mauel, Michael.
Dissertation Note  
Thesis (Ph.D.)--Columbia University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Halo currents (HCs) in post-disruption plasmas can be large enough to exert significant electromagnetic loads on structures surrounding the plasma. These currents have axisymmetric and non-axisymmetric components, both of which pose threats to the vacuum vessel and other components. However, the non-axisymmetric forces can rotate, amplifying the displacements they cause when the rotation is close to the structures' resonant frequencies. A new physically motivated scaling law has been developed that describes the rotation frequencies of these HCs and has been validated against measurements on HBT-EP, Alcator C-Mod, and other tokamaks [1, 2]. This scaling law can describe the time-evolution of the asymmetric HC rotation throughout disruptions on HBT-EP as well as the time-averaged rotation on C-Mod. The scaling law can also be modified to include the edge safety factor at the onset of rotation (qonset), which significantly improves its validity when applied to machines like C-Mod, where qonset changes frequently. The qonset dependence is explained by the relationship between the poloidal structure of the HC asymmetries and the MHD instabilities that drive them, which has been observed experimentally for the first time using a novel set of current sensing limiter tiles installed on HBT-EP. The 1/a2 and qonset-dependence of the rotation suggest that the HCs predominantly rotate poloidally. This remains consistent with the toroidal rotation observed on HBT-EP and other tokamaks through the "Barber Pole Illusion" and the direction of rotation's dependence on the direction of Ip. This scaling law is used to make projections for next generation tokamaks like ITER and SPARC, which predicts that rotation will be resonant on ITER. However, resonant effects can still be avoided if the duration of the disruption is kept short enough to prevent two rotations from being completed [3].
Subject Added Entry-Topical Term  
Plasma physics.
Subject Added Entry-Topical Term  
Electromagnetics.
Index Term-Uncontrolled  
Fusion
Index Term-Uncontrolled  
Halo currents
Index Term-Uncontrolled  
Tokamaks
Index Term-Uncontrolled  
Non-axisymmetric components
Index Term-Uncontrolled  
Vacuum vessel
Added Entry-Corporate Name  
Columbia University Applied Physics
Host Item Entry  
Dissertations Abstracts International. 85-01B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:640077
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 캠퍼스간 도서대출
  • 서가에 없는 책 신고
  • 나의폴더
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TQ0025991 T   원문자료 열람가능/출력가능 열람가능/출력가능
마이폴더 부재도서신고

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련도서

관련 인기도서

도서위치