본문

서브메뉴

Generalized Submodular Optimization: Theory, Algorithms and Applications- [electronic resource]
Generalized Submodular Optimization: Theory, Algorithms and Applications- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016934651
International Standard Book Number  
9798380145183
Dewey Decimal Classification Number  
621.3
Main Entry-Personal Name  
Yu, Qimeng.
Publication, Distribution, etc. (Imprint  
[S.l.] : Northwestern University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(264 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-02, Section: B.
General Note  
Advisor: Kucukyavuz, Simge.
Dissertation Note  
Thesis (Ph.D.)--Northwestern University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Submodularity is a well-known concept in integer programming and combinatorial optimization. Submodular set functions capture the diminishing returns phenomenon, which has wide-ranging applications in various domains. Typically, a submodular set function models the utility of homogenous items selected from a single ground set. Selecting an item or not is naturally represented by one or zero. Therefore, optimizing submodular set functions is a class of interesting mixed-integer programming (MIP) problems with binary variables. In practice, many problem contexts call for extensions of submodularity-we may select multiple copies of homogenous items or choose heterogenous items from distinct ground sets. We refer to the optimization problems arising from such extensions of submodularity as Generalized Submodular Optimization (GSO). In GSO, the objective function is usually highly nonlinear, and the decision space is mixed-integer. These challenges make GSO a broad subclass of mixed-integer nonlinear programming (MINLP) problems. In this dissertation, we present theory, algorithms, and applications of GSO. Specifically, we explore the optimization problems with classical submodular set functions and two classes of generalized submodular functions, under constraints. We provide polyhedral theory for the underlying mixed-integer structures in these problems. Our theoretical results lead to efficient and versatile exact solution methods, which have demonstrated their effectiveness in practical problems using real-world datasets.
Subject Added Entry-Topical Term  
Computer engineering.
Index Term-Uncontrolled  
Convex hull
Index Term-Uncontrolled  
Mixed-integer programming
Index Term-Uncontrolled  
Nonlinear optimization
Index Term-Uncontrolled  
Polyhedral
Index Term-Uncontrolled  
Generalized Submodular Optimization
Added Entry-Corporate Name  
Northwestern University Industrial Engineering and Management Sciences
Host Item Entry  
Dissertations Abstracts International. 85-02B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:639979

MARC

 008240219s2023        ulk                      00        kor
■001000016934651
■00520240214101638
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380145183
■035    ▼a(MiAaPQ)AAI30632166
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a621.3
■1001  ▼aYu,  Qimeng.
■24510▼aGeneralized  Submodular  Optimization:  Theory,  Algorithms  and  Applications▼h[electronic  resource]
■260    ▼a[S.l.]▼bNorthwestern  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(264  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-02,  Section:  B.
■500    ▼aAdvisor:  Kucukyavuz,  Simge.
■5021  ▼aThesis  (Ph.D.)--Northwestern  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aSubmodularity  is  a  well-known  concept  in  integer  programming  and  combinatorial  optimization.  Submodular  set  functions  capture  the  diminishing  returns  phenomenon,  which  has  wide-ranging  applications  in  various  domains.  Typically,  a  submodular  set  function  models  the  utility  of  homogenous  items  selected  from  a  single  ground  set.  Selecting  an  item  or  not  is  naturally  represented  by  one  or  zero.  Therefore,  optimizing  submodular  set  functions  is  a  class  of  interesting  mixed-integer  programming  (MIP)  problems  with  binary  variables.  In  practice,  many  problem  contexts  call  for  extensions  of  submodularity-we  may  select  multiple  copies  of  homogenous  items  or  choose  heterogenous  items  from  distinct  ground  sets.  We  refer  to  the  optimization  problems  arising  from  such  extensions  of  submodularity  as  Generalized  Submodular  Optimization  (GSO).  In  GSO,  the  objective  function  is  usually  highly  nonlinear,  and  the  decision  space  is  mixed-integer.  These  challenges  make  GSO  a  broad  subclass  of  mixed-integer  nonlinear  programming  (MINLP)  problems.  In  this  dissertation,  we  present  theory,  algorithms,  and  applications  of  GSO.  Specifically,  we  explore  the  optimization  problems  with  classical  submodular  set  functions  and  two  classes  of  generalized  submodular  functions,  under  constraints.  We  provide  polyhedral  theory  for  the  underlying  mixed-integer  structures  in  these  problems.  Our  theoretical  results  lead  to  efficient  and  versatile  exact  solution  methods,  which  have  demonstrated  their  effectiveness  in  practical  problems  using  real-world  datasets.
■590    ▼aSchool  code:  0163.
■650  4▼aComputer  engineering.
■653    ▼aConvex  hull
■653    ▼aMixed-integer  programming
■653    ▼aNonlinear  optimization
■653    ▼aPolyhedral
■653    ▼aGeneralized  Submodular  Optimization
■690    ▼a0796
■690    ▼a0464
■71020▼aNorthwestern  University▼bIndustrial  Engineering  and  Management  Sciences.
■7730  ▼tDissertations  Abstracts  International▼g85-02B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0163
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16934651▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    최근 3년간 통계입니다.

    ค้นหาข้อมูลรายละเอียด

    • จองห้องพัก
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • โฟลเดอร์ของฉัน
    วัสดุ
    Reg No. Call No. ตำแหน่งที่ตั้ง สถานะ ยืมข้อมูล
    TQ0025803 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * จองมีอยู่ในหนังสือยืม เพื่อให้การสำรองที่นั่งคลิกที่ปุ่มจองห้องพัก

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치