본문

서브메뉴

Inference of Cascades and Correlated Networks- [electronic resource]
Inference of Cascades and Correlated Networks- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016932414
International Standard Book Number  
9798379719210
Dewey Decimal Classification Number  
310
Main Entry-Personal Name  
Sridhar, Anirudh.
Publication, Distribution, etc. (Imprint  
[S.l.] : Princeton University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(239 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
General Note  
Advisor: Poor, H. Vincent;Racz, Miklos Z.
Dissertation Note  
Thesis (Ph.D.)--Princeton University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약This thesis makes fundamental contributions to a few statistical inference tasks on networks, with a focus on information-theoretic characterizations. In the first part of this thesis, we study the problem of localizing a network cascade from noisy, real-time measurements of its spread (i.e., through error-prone diagnostic tests). Our objective is to design algorithms that can estimate the cascade source as fast as possible, so that the impact of the cascade on the network can be mitigated. We design estimation procedures from Bayesian and minimax perspectives. In the Bayesian setting, we propose an estimator which observes samples until the error of the Bayes-optimal estimator falls below a threshold. In the minimax setting, we devise a novel multihypothesis sequential probability ratio test (MSPRT) for source estimation. When estimating simple cascades in trees and lattices, we show that both methods are optimal, in the sense that no other algorithm can accurately estimate the source with a substantially smaller number of samples. Finally, we discuss how our methods may be extended to estimate realistic cascades in generic networks.In the second part of this thesis, we study graph matching and community recovery in networks with correlated structure. First, we derive the precise information-theoretic threshold for fully recovering the latent vertex correspondence between two edge-correlated stochastic block models - a task known as exact graph matching. We then characterize the information-theoretic landscape of community recovery in correlated stochastic block models, which requires a delicate interplay between graph matching and community recovery algorithms. In particular, we uncover and characterize a region of the parameter space where exact community recovery is possible using multiple correlated graphs, even though (1) this is information-theoretically impossible using a single graph and (2) exact graph matching is also information-theoretically impossible. In this regime, we develop a novel algorithm that carefully synthesizes community recovery and graph matching algorithms.
Subject Added Entry-Topical Term  
Statistics.
Subject Added Entry-Topical Term  
Applied mathematics.
Subject Added Entry-Topical Term  
Electrical engineering.
Index Term-Uncontrolled  
Community recovery
Index Term-Uncontrolled  
Graph matching
Index Term-Uncontrolled  
Hypothesis testing
Index Term-Uncontrolled  
Network cascades
Index Term-Uncontrolled  
Stochastic block model
Index Term-Uncontrolled  
Susceptible-infected process
Added Entry-Corporate Name  
Princeton University Electrical and Computer Engineering
Host Item Entry  
Dissertations Abstracts International. 84-12B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:639846

MARC

 008240219s2023        ulk                      00        kor
■001000016932414
■00520240214100455
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379719210
■035    ▼a(MiAaPQ)AAI30492319
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a310
■1001  ▼aSridhar,  Anirudh.
■24510▼aInference  of  Cascades  and  Correlated  Networks▼h[electronic  resource]
■260    ▼a[S.l.]▼bPrinceton  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(239  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  84-12,  Section:  B.
■500    ▼aAdvisor:  Poor,  H.  Vincent;Racz,  Miklos  Z.
■5021  ▼aThesis  (Ph.D.)--Princeton  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aThis  thesis  makes  fundamental  contributions  to  a  few  statistical  inference  tasks  on  networks,  with  a  focus  on  information-theoretic  characterizations. In  the  first  part  of  this  thesis,  we  study  the  problem  of  localizing  a  network  cascade  from  noisy,  real-time  measurements  of  its  spread  (i.e.,  through  error-prone  diagnostic  tests).  Our  objective  is  to  design  algorithms  that  can  estimate  the  cascade  source  as  fast  as  possible,  so  that  the  impact  of  the  cascade  on  the  network  can  be  mitigated.  We  design  estimation  procedures  from  Bayesian  and  minimax  perspectives.  In  the  Bayesian  setting,  we  propose  an  estimator  which  observes  samples  until  the  error  of  the  Bayes-optimal  estimator  falls  below  a  threshold.  In  the  minimax  setting,  we  devise  a  novel  multihypothesis  sequential  probability  ratio  test  (MSPRT)  for  source  estimation.  When  estimating  simple  cascades  in  trees  and  lattices,  we  show  that  both  methods  are  optimal,  in  the  sense  that  no  other  algorithm  can  accurately  estimate  the  source  with  a  substantially  smaller  number  of  samples.  Finally,  we  discuss  how  our  methods  may  be  extended  to  estimate  realistic  cascades  in  generic  networks.In  the  second  part  of  this  thesis,  we  study  graph  matching  and  community  recovery  in  networks  with  correlated  structure.  First,  we  derive  the  precise  information-theoretic  threshold  for  fully  recovering  the  latent  vertex  correspondence  between  two  edge-correlated  stochastic  block  models  -  a  task  known  as  exact  graph  matching.  We  then  characterize  the  information-theoretic  landscape  of  community  recovery  in  correlated  stochastic  block  models,  which  requires  a  delicate  interplay  between  graph  matching  and  community  recovery  algorithms.  In  particular,  we  uncover  and  characterize  a  region  of  the  parameter  space  where  exact  community  recovery  is  possible  using  multiple  correlated  graphs,  even  though  (1)  this  is  information-theoretically  impossible  using  a  single  graph  and  (2)  exact  graph  matching  is  also  information-theoretically  impossible.  In  this  regime,  we  develop  a  novel  algorithm  that  carefully  synthesizes  community  recovery  and  graph  matching  algorithms.
■590    ▼aSchool  code:  0181.
■650  4▼aStatistics.
■650  4▼aApplied  mathematics.
■650  4▼aElectrical  engineering.
■653    ▼aCommunity  recovery
■653    ▼aGraph  matching
■653    ▼aHypothesis  testing
■653    ▼aNetwork  cascades
■653    ▼aStochastic  block  model
■653    ▼aSusceptible-infected  process
■690    ▼a0463
■690    ▼a0364
■690    ▼a0544
■71020▼aPrinceton  University▼bElectrical  and  Computer  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g84-12B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0181
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16932414▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0025774 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치