본문

서브메뉴

Ultrasonic Wireless Power and Data Transmission to Miniaturized Biomedical Implants Using Phased Array- [electronic resource]
Ultrasonic Wireless Power and Data Transmission to Miniaturized Biomedical Implants Using Phased Array- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016935412
International Standard Book Number  
9798380731843
Dewey Decimal Classification Number  
617.95005
Main Entry-Personal Name  
Kashani, Zeinab.
Publication, Distribution, etc. (Imprint  
[S.l.] : The Pennsylvania State University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(157 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-05, Section: B.
General Note  
Advisor: Kiani, Mehdi.
Dissertation Note  
Thesis (Ph.D.)--The Pennsylvania State University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약This PhD dissertation focuses on developing efficient ultrasonic (US) wireless power and data transfer technologies for biomedical implants with millimeter (mm) dimensions. An ultrasonically interrogated (power/data) system with an external US array for beam focusing and steering through US beamforming is proposed to enable gastric electrical-wave mapping for diagnosing and eventually treating gastrointestinal motility disorders. The dissertation is divided into five parts. In the first part, the theory, design, and characterization of a wireless power transfer (WPT) link using mm-sized receivers (Rx) and a phased array (as external transmitter) are discussed. For given constraints imposed by the application and fabrication, such as the load (RL) and focal/powering distance (F), the optimal geometries of a US phased array and Rx transducer, as well as the optimal operation frequency (fc) are found through an iterative design procedure to maximize the power transfer efficiency (PTE). An optimal figure of merit (FoM) related to the link's PTE is proposed to simplify the US array design. In measurements, a fabricated 16-element array driven by 100 V pulses at an optimal frequency generated a US beam with a pressure output of 0.8 MPa and delivered up to 6 mW to a 1 mm3 Rx with a PTE of 0.14%.In the second part of this dissertation, a comprehensive study of wireless power transmission using a 32-element phased array capable of beam focusing and steering up to 50 mm depth and ±60o angle is provided. The performance of the US WPT link using mm-sized US receivers with different geometries and dimensions, the effect of different types of errors in the delay profile of the beamforming system on the delivered power, and the feasibility and efficacy of implant's localization with pulse-delay measurements with limited number of elements are investigated. The WPT link performance is evaluated based on the delivered power (within FDA safety limits) to mm-sized receivers with different geometries and diameters.In the third part of this dissertation, optimal US pulse transmission is demonstrated that could be used for data transmission to/from millimeter-sized biomedical implants in general or the self-image-guided ultrasonic (SIG-US) WPT. In SIG-US WPT, short pulses are transmitted by the implant periodically. The relative delays in the received signal by each external transducer in an array are then used to guide the beamformer for optimal steering of the power beam towards the implant. The effect of number of transmitted pulses on the amplitude of the received signal is studied, which is vital for low-power robust transmission. Furthermore, an adaptive application-specific integrated circuit (ASIC) for closed-loop low-power (and robust) US pulse-based data transmission is presented. The number of transmitted US pulses is changed based on the received voltage at the external unit in the closed-loop system to improve robustness and minimize the power consumption of the data transmitter. The ASIC, designed and fabricated in a 0.35μm standard CMOS process, includes power management, controller/pulse driver, and envelope detector units.The fourth part of this dissertation includes ASIC design for low-frequency, low-power, and low-noise amplifiers that will be used to record gastric slow-wave signals. Simulation results and some limited measurement results are provided.The fifth part of this dissertation includes measurement results for a dual-mode ultrasonic-magnetic approach for wireless power transmission and energy harvesting. This dual-mode approach has the potential to solve the problem of power reduction when implant is rotating and to deliver high power within FDA safety limit using two different modalities. The future steps for circuit/system design, development, and testing are outlined. This dissertation represents an important step towards an implantable fully wireless gastric system, interrogated with a dual-mode ultrasonic-magnetic link for wireless power/data transfer, which can have a broad impact in the fields of health monitoring, diagnosis, and therapy.
Subject Added Entry-Topical Term  
Transplants & implants.
Subject Added Entry-Topical Term  
Thoracic surgery.
Subject Added Entry-Topical Term  
Ultrasonic transducers.
Subject Added Entry-Topical Term  
Catheters.
Subject Added Entry-Topical Term  
Electricity generation.
Subject Added Entry-Topical Term  
Sensors.
Subject Added Entry-Topical Term  
Electric power.
Subject Added Entry-Topical Term  
Self image.
Subject Added Entry-Topical Term  
Transmitters.
Subject Added Entry-Topical Term  
Batteries.
Subject Added Entry-Topical Term  
Women.
Subject Added Entry-Topical Term  
Acoustics.
Subject Added Entry-Topical Term  
Data transmission.
Subject Added Entry-Topical Term  
Stomach.
Subject Added Entry-Topical Term  
Ultrasonic imaging.
Subject Added Entry-Topical Term  
Motility.
Subject Added Entry-Topical Term  
Radiation.
Subject Added Entry-Topical Term  
Electromagnetics.
Subject Added Entry-Topical Term  
Biomedical engineering.
Index Term-Uncontrolled  
Wireless power transfer
Index Term-Uncontrolled  
Data transfer technologies
Index Term-Uncontrolled  
Low-noise amplifiers
Added Entry-Corporate Name  
The Pennsylvania State University.
Host Item Entry  
Dissertations Abstracts International. 85-05B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:639784

MARC

 008240219s2023        ulk                      00        kor
■001000016935412
■00520240214101928
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380731843
■035    ▼a(MiAaPQ)AAI30720617
■035    ▼a(MiAaPQ)PennState_24018zxk92
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a617.95005
■1001  ▼aKashani,  Zeinab.
■24510▼aUltrasonic  Wireless  Power  and  Data  Transmission  to  Miniaturized  Biomedical  Implants  Using  Phased  Array▼h[electronic  resource]
■260    ▼a[S.l.]▼bThe  Pennsylvania  State  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(157  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-05,  Section:  B.
■500    ▼aAdvisor:  Kiani,  Mehdi.
■5021  ▼aThesis  (Ph.D.)--The  Pennsylvania  State  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aThis  PhD  dissertation  focuses  on  developing  efficient  ultrasonic  (US)  wireless  power  and  data  transfer  technologies  for  biomedical  implants  with  millimeter  (mm)  dimensions.  An  ultrasonically  interrogated  (power/data)  system  with  an  external  US  array  for  beam  focusing  and  steering  through  US  beamforming  is  proposed  to  enable  gastric  electrical-wave  mapping  for  diagnosing  and  eventually  treating  gastrointestinal  motility  disorders.  The  dissertation  is  divided  into  five  parts.  In  the  first  part,  the  theory,  design,  and  characterization  of  a  wireless  power  transfer  (WPT)  link  using  mm-sized  receivers  (Rx)  and  a  phased  array  (as  external  transmitter)  are  discussed.  For  given  constraints  imposed  by  the  application  and  fabrication,  such  as  the  load  (RL)  and  focal/powering  distance  (F),  the  optimal  geometries  of  a  US  phased  array  and  Rx  transducer,  as  well  as  the  optimal  operation  frequency  (fc)  are  found  through  an  iterative  design  procedure  to  maximize  the  power  transfer  efficiency  (PTE).  An  optimal  figure  of  merit  (FoM)  related  to  the  link's  PTE  is  proposed  to  simplify  the  US  array  design.  In  measurements,  a  fabricated  16-element  array  driven  by  100  V  pulses  at  an  optimal  frequency  generated  a  US  beam  with  a  pressure  output  of  0.8  MPa  and  delivered  up  to  6  mW  to  a  1  mm3  Rx  with  a  PTE  of  0.14%.In  the  second  part  of  this  dissertation,  a  comprehensive  study  of  wireless  power  transmission  using  a  32-element  phased  array  capable  of  beam  focusing  and  steering  up  to  50  mm  depth  and  ±60o  angle  is  provided.  The  performance  of  the  US  WPT  link  using  mm-sized  US  receivers  with  different  geometries  and  dimensions,  the  effect  of  different  types  of  errors  in  the  delay  profile  of  the  beamforming  system  on  the  delivered  power,  and  the  feasibility  and  efficacy  of  implant's  localization  with  pulse-delay  measurements  with  limited  number  of  elements  are  investigated.  The  WPT  link  performance  is  evaluated  based  on  the  delivered  power  (within  FDA  safety  limits)  to  mm-sized  receivers  with  different  geometries  and  diameters.In  the  third  part  of  this  dissertation,  optimal  US  pulse  transmission  is  demonstrated  that  could  be  used  for  data  transmission  to/from  millimeter-sized  biomedical  implants  in  general  or  the  self-image-guided  ultrasonic  (SIG-US)  WPT.  In  SIG-US  WPT,  short  pulses  are  transmitted  by  the  implant  periodically.  The  relative  delays  in  the  received  signal  by  each  external  transducer  in  an  array  are  then  used  to  guide  the  beamformer  for  optimal  steering  of  the  power  beam  towards  the  implant.  The  effect  of  number  of  transmitted  pulses  on  the  amplitude  of  the  received  signal  is  studied,  which  is  vital  for  low-power  robust  transmission.  Furthermore,  an  adaptive  application-specific  integrated  circuit  (ASIC)  for  closed-loop  low-power  (and  robust)  US  pulse-based  data  transmission  is  presented.  The  number  of  transmitted  US  pulses  is  changed  based  on  the  received  voltage  at  the  external  unit  in  the  closed-loop  system  to  improve  robustness  and  minimize  the  power  consumption  of  the  data  transmitter.  The  ASIC,  designed  and  fabricated  in  a  0.35μm  standard  CMOS  process,  includes  power  management,  controller/pulse  driver,  and  envelope  detector  units.The  fourth  part  of  this  dissertation  includes  ASIC  design  for  low-frequency,  low-power,  and  low-noise  amplifiers  that  will  be  used  to  record  gastric  slow-wave  signals.  Simulation  results  and  some  limited  measurement  results  are  provided.The  fifth  part  of  this  dissertation  includes  measurement  results  for  a  dual-mode  ultrasonic-magnetic  approach  for  wireless  power  transmission  and  energy  harvesting.  This  dual-mode  approach  has  the  potential  to  solve  the  problem  of  power  reduction  when  implant  is  rotating  and  to  deliver  high  power  within  FDA  safety  limit  using  two  different  modalities.  The  future  steps  for  circuit/system  design,  development,  and  testing  are  outlined.  This  dissertation  represents  an  important  step  towards  an  implantable  fully  wireless  gastric  system,  interrogated  with  a  dual-mode  ultrasonic-magnetic  link  for  wireless  power/data  transfer,  which  can  have  a  broad  impact  in  the  fields  of  health  monitoring,  diagnosis,  and  therapy.
■590    ▼aSchool  code:  0176.
■650  4▼aTransplants  &  implants.
■650  4▼aThoracic  surgery.
■650  4▼aUltrasonic  transducers.
■650  4▼aCatheters.
■650  4▼aElectricity  generation.
■650  4▼aSensors.
■650  4▼aElectric  power.
■650  4▼aSelf  image.
■650  4▼aTransmitters.
■650  4▼aBatteries.
■650  4▼aWomen.
■650  4▼aAcoustics.
■650  4▼aData  transmission.
■650  4▼aStomach.
■650  4▼aUltrasonic  imaging.
■650  4▼aMotility.
■650  4▼aRadiation.
■650  4▼aElectromagnetics.
■650  4▼aBiomedical  engineering.
■653    ▼aWireless  power  transfer
■653    ▼aData  transfer  technologies
■653    ▼aLow-noise  amplifiers
■690    ▼a0986
■690    ▼a0541
■690    ▼a0607
■71020▼aThe  Pennsylvania  State  University.
■7730  ▼tDissertations  Abstracts  International▼g85-05B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0176
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16935412▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0025708 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치