본문

서브메뉴

Robust Machine Learning for the Control of Real-world Robotic Systems- [electronic resource]
Robust Machine Learning for the Control of Real-world Robotic Systems- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016932366
International Standard Book Number  
9798380380713
Dewey Decimal Classification Number  
620
Main Entry-Personal Name  
Westenbroek, Tyler.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of California, Berkeley., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(129 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-03, Section: B.
General Note  
Advisor: Sastry, S. Shankar.
Dissertation Note  
Thesis (Ph.D.)--University of California, Berkeley, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Optimal control is a powerful paradigm for controller design as it can be used to implicitly encode complex stabilizing behaviors using cost functions which are relatively simple to specify. On the other hand, the curse of dimensionality and the presence of non-convex optimization landscapes can make it challenging to reliably obtain stabilizing controllers for complex high-dimensional systems. Recently, sampling-based reinforcement learning approaches have enabled roboticists to obtain approximately optimal feedback controllers for high-dimensional systems even when the dynamics are unknown. However, these methods remain too unreliable for practical deployment in many application domains.This dissertation argues that the key to reliable optimization-based controller synthesis is obtaining a deeper understanding of how the cost functions we write down and the algorithms we design interact with the underlying feedback geometry of the control system. First, we next investigate how to accelerate model-free reinforcement learning by embedding control Lyapunov functions - which are energy like functions for the system- into the objective. Next we will introduce a novel data-driven policy optimization framework which embeds structural information from an approximate dynamics model and family of low-level feedback controllers into the update scheme. We then turn to a dynamic programming perspective, and investigate how the geometric structure of the system places fundamental limitations on how much computation is required to compute or learn a stabilizing controller. Finally, we investigate derivative-based search algorithms and investigate how to design 'good' cost functions for model predictive control schemes, which ensure these methods stabilize the system even when gradient-based methods are used to search over a non-convex objective. Throughout an emphasis will be placed on how structural insights gleaned from a simple analytical model can guide our design decisions, and we will discuss applications to dynamic walking, flight control, and autonomous driving.
Subject Added Entry-Topical Term  
Engineering.
Subject Added Entry-Topical Term  
Computer engineering.
Subject Added Entry-Topical Term  
Robotics.
Index Term-Uncontrolled  
Control theory
Index Term-Uncontrolled  
Machine learning
Index Term-Uncontrolled  
Autonomous driving
Index Term-Uncontrolled  
Reinforcement learning
Index Term-Uncontrolled  
Dynamic programming
Added Entry-Corporate Name  
University of California, Berkeley Electrical Engineering & Computer Sciences
Host Item Entry  
Dissertations Abstracts International. 85-03B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:639601

MARC

 008240219s2023        ulk                      00        kor
■001000016932366
■00520240214100448
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380380713
■035    ▼a(MiAaPQ)AAI30491883
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a620
■1001  ▼aWestenbroek,  Tyler.
■24510▼aRobust  Machine  Learning  for  the  Control  of  Real-world  Robotic  Systems▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  California,  Berkeley.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(129  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-03,  Section:  B.
■500    ▼aAdvisor:  Sastry,  S.  Shankar.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  Berkeley,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aOptimal  control  is  a  powerful  paradigm  for  controller  design  as  it  can  be  used  to  implicitly  encode  complex  stabilizing  behaviors  using  cost  functions  which  are  relatively  simple  to  specify.  On  the  other  hand,  the  curse  of  dimensionality  and  the  presence  of  non-convex  optimization  landscapes  can  make  it  challenging  to  reliably  obtain  stabilizing  controllers  for  complex  high-dimensional  systems.  Recently,  sampling-based  reinforcement  learning  approaches  have  enabled  roboticists  to  obtain  approximately  optimal  feedback  controllers  for  high-dimensional  systems  even  when  the  dynamics  are  unknown.  However,  these  methods  remain  too  unreliable  for  practical  deployment  in  many  application  domains.This  dissertation  argues  that  the  key  to  reliable  optimization-based  controller  synthesis  is  obtaining  a  deeper  understanding  of  how  the  cost  functions  we  write  down  and  the  algorithms  we  design  interact  with  the  underlying  feedback  geometry  of  the  control  system.  First,  we  next  investigate  how  to  accelerate  model-free  reinforcement  learning  by  embedding  control  Lyapunov  functions  -  which  are  energy  like  functions  for  the  system-  into  the  objective.  Next  we  will  introduce  a  novel  data-driven  policy  optimization  framework  which  embeds  structural  information  from  an  approximate  dynamics  model  and  family  of  low-level  feedback  controllers  into  the  update  scheme.  We  then  turn  to  a  dynamic  programming  perspective,  and  investigate  how  the  geometric  structure  of  the  system  places  fundamental  limitations  on  how  much  computation  is  required  to  compute  or  learn  a  stabilizing  controller.  Finally,  we  investigate  derivative-based  search  algorithms  and  investigate  how  to  design  'good'  cost  functions  for  model  predictive  control  schemes,  which  ensure  these  methods  stabilize  the  system  even  when  gradient-based  methods  are  used  to  search  over  a  non-convex  objective.  Throughout  an  emphasis  will  be  placed  on  how  structural  insights  gleaned  from  a  simple  analytical  model  can  guide  our  design  decisions,  and  we  will  discuss  applications  to  dynamic  walking,  flight  control,  and  autonomous  driving.
■590    ▼aSchool  code:  0028.
■650  4▼aEngineering.
■650  4▼aComputer  engineering.
■650  4▼aRobotics.
■653    ▼aControl  theory
■653    ▼aMachine  learning
■653    ▼aAutonomous  driving
■653    ▼aReinforcement  learning
■653    ▼aDynamic  programming
■690    ▼a0537
■690    ▼a0464
■690    ▼a0800
■690    ▼a0771
■71020▼aUniversity  of  California,  Berkeley▼bElectrical  Engineering  &  Computer  Sciences.
■7730  ▼tDissertations  Abstracts  International▼g85-03B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0028
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16932366▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0025525 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치