본문

서브메뉴

Improving Reliability in Dialogue Systems- [electronic resource]
Improving Reliability in Dialogue Systems- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016934125
International Standard Book Number  
9798380144582
Dewey Decimal Classification Number  
004
Main Entry-Personal Name  
Gupta, Prakhar.
Publication, Distribution, etc. (Imprint  
[S.l.] : Carnegie Mellon University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(196 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-02, Section: B.
General Note  
Advisor: Bigham, Jeffrey P. .
Dissertation Note  
Thesis (Ph.D.)--Carnegie Mellon University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Dialogue systems have undergone significant advancements by leveraging large public corpora and advancements in neural architectures. Thanks to large pre-trained language models and recent developments in neural networks, dialogue generation systems are now capable of producing fluent and engaging responses across various dialogue contexts. However, black-box nature and heightened complexity of end-to-end neural dialogue models make them susceptible to unknown failure modes that often emerge only after deployment. To improve the reliability of neural dialogue models for practical applications, several challenges need to be addressed. Firstly, creating robust and bias-free evaluation and ranking models for dialogue is a not straight-forward as it requires careful consideration of various factors such as context, coherence, relevance, and user satisfaction. Secondly, controlling the outputs of dialogue response generation models to align with developers' intended goals presents a challenge. Current approaches often lack the necessary flexibility, intuitiveness, interpretability, and data-efficiency to enable fine-grained control over the generated responses. Lastly, enhancing safety measures is crucial to ensure that dialogue systems do not generate offensive or factually incorrect responses, thereby avoiding unintended harm to users.This thesis addresses the challenges in enhancing the reliability of neural dialogue models by introducing novel techniques for robust evaluation and providing finer, more intuitive control over the response generation process. The thesis comprises two main parts that tackle these challenges. The first part focuses on the development of techniques for creating robust dialogue response evaluation and ranking algorithms. These techniques utilize multiple references, automatically generated adversarial responses, and improved benchmarking methods for assessing factuality. By incorporating these approaches, the thesis aims to establish more reliable and comprehensive evaluation metrics for dialogue systems, ensuring a more accurate assessment of their performance. The second part of the thesis proposes techniques to empower developers with flexible, intuitive, and interpretable means of controlling the generation process. This includes the utilization of templates, examples, instructions, and guidelines to guide the system towards generating responses that align with specific tasks and developer intent. Additionally, this part introduces safety mechanisms designed to prevent misuse and harm to users. These safety mechanisms utilize natural language instructions and guidelines to ensure responsible and ethical behavior of the dialogue systems.
Subject Added Entry-Topical Term  
Computer science.
Index Term-Uncontrolled  
Chatbots
Index Term-Uncontrolled  
Conversational agents
Index Term-Uncontrolled  
Dialogue systems
Index Term-Uncontrolled  
Ranking algorithms
Index Term-Uncontrolled  
Neural architectures
Added Entry-Corporate Name  
Carnegie Mellon University Language Technologies Institute
Host Item Entry  
Dissertations Abstracts International. 85-02B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:639391

MARC

 008240219s2023        ulk                      00        kor
■001000016934125
■00520240214101531
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380144582
■035    ▼a(MiAaPQ)AAI30571710
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a004
■1001  ▼aGupta,  Prakhar.
■24510▼aImproving  Reliability  in  Dialogue  Systems▼h[electronic  resource]
■260    ▼a[S.l.]▼bCarnegie  Mellon  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(196  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-02,  Section:  B.
■500    ▼aAdvisor:  Bigham,  Jeffrey  P.  .
■5021  ▼aThesis  (Ph.D.)--Carnegie  Mellon  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aDialogue  systems  have  undergone  significant  advancements  by  leveraging  large  public  corpora  and  advancements  in  neural  architectures.  Thanks  to  large  pre-trained  language  models  and  recent  developments  in  neural  networks,  dialogue  generation  systems  are  now  capable  of  producing  fluent  and  engaging  responses  across  various  dialogue  contexts.  However,  black-box  nature  and  heightened  complexity  of  end-to-end  neural  dialogue  models  make  them  susceptible  to  unknown  failure  modes  that  often  emerge  only  after  deployment.  To  improve  the  reliability  of  neural  dialogue  models  for  practical  applications,  several  challenges  need  to  be  addressed.  Firstly,  creating  robust  and  bias-free  evaluation  and  ranking  models  for  dialogue  is  a  not  straight-forward  as  it  requires  careful  consideration  of  various  factors  such  as  context,  coherence,  relevance,  and  user  satisfaction.  Secondly,  controlling  the  outputs  of  dialogue  response  generation  models  to  align  with  developers'  intended  goals  presents  a  challenge.  Current  approaches  often  lack  the  necessary  flexibility,  intuitiveness,  interpretability,  and  data-efficiency  to  enable  fine-grained  control  over  the  generated  responses.  Lastly,  enhancing  safety  measures  is  crucial  to  ensure  that  dialogue  systems  do  not  generate  offensive  or  factually  incorrect  responses,  thereby  avoiding  unintended  harm  to  users.This  thesis  addresses  the  challenges  in  enhancing  the  reliability  of  neural  dialogue  models  by  introducing  novel  techniques  for  robust  evaluation  and  providing  finer,  more  intuitive  control  over  the  response  generation  process.  The  thesis  comprises  two  main  parts  that  tackle  these  challenges.  The  first  part  focuses  on  the  development  of  techniques  for  creating  robust  dialogue  response  evaluation  and  ranking  algorithms.  These  techniques  utilize  multiple  references,  automatically  generated  adversarial  responses,  and  improved  benchmarking  methods  for  assessing  factuality.  By  incorporating  these  approaches,  the  thesis  aims  to  establish  more  reliable  and  comprehensive  evaluation  metrics  for  dialogue  systems,  ensuring  a  more  accurate  assessment  of  their  performance.  The  second  part  of  the  thesis  proposes  techniques  to  empower  developers  with  flexible,  intuitive,  and  interpretable  means  of  controlling  the  generation  process.  This  includes  the  utilization  of  templates,  examples,  instructions,  and  guidelines  to  guide  the  system  towards  generating  responses  that  align  with  specific  tasks  and  developer  intent.  Additionally,  this  part  introduces  safety  mechanisms  designed  to  prevent  misuse  and  harm  to  users.  These  safety  mechanisms  utilize  natural  language  instructions  and  guidelines  to  ensure  responsible  and  ethical  behavior  of  the  dialogue  systems.
■590    ▼aSchool  code:  0041.
■650  4▼aComputer  science.
■653    ▼aChatbots
■653    ▼aConversational  agents
■653    ▼aDialogue  systems
■653    ▼aRanking  algorithms
■653    ▼aNeural  architectures
■690    ▼a0800
■690    ▼a0984
■71020▼aCarnegie  Mellon  University▼bLanguage  Technologies  Institute.
■7730  ▼tDissertations  Abstracts  International▼g85-02B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0041
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16934125▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    高级搜索信息

    • 预订
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 我的文件夹
    材料
    注册编号 呼叫号码. 收藏 状态 借信息.
    TQ0025318 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *保留在借用的书可用。预订,请点击预订按钮

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치