본문

서브메뉴

Collective Good and Optimization in Socioeconomic Systems- [electronic resource]
Collective Good and Optimization in Socioeconomic Systems- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016932284
International Standard Book Number  
9798379717209
Dewey Decimal Classification Number  
361
Main Entry-Personal Name  
Rigobon, Daniel E. .
Publication, Distribution, etc. (Imprint  
[S.l.] : Princeton University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(145 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 84-12, Section: A.
General Note  
Advisor: Sircar, Ronnie;Racz, Miklos Z. .
Dissertation Note  
Thesis (Ph.D.)--Princeton University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Optimization is fundamentally grounded in perspective - one party's desired outcome may induce unintended harm on another. Such cases of misalignment between designers' incentives and collective good therefore demand attention, especially when consequences are meaningful for society. To this end, we study three settings in which individualistic optimization and social good can conflict.First, we study how a centralized planner can modify the structure of a social or information network to reduce polarization. By formulating and analyzing a greedy approach to the planner's problem, we motivate two practical heuristics: coordinate descent and disagreement-seeking. We also introduce a setting where the population's innate opinions are adversarially chosen, which reduces to maximization of the Laplacian's spectral gap. We motivate a heuristic that adds edges spanning the cut induced by the spectral gap's eigenvector. These three heuristics are evaluated on real-world and synthetic networks. We observe that connecting disagreeing users is consistently effective, suggesting that the incentives of individuals and recommender systems may reinforce polarization.Second, we build a model of the financial system in which banks control both their supply of liquidity, through cash holdings, and their exposures to risky interbank loans. The value of interbank loans drops when borrowing banks suffers liquidity shortages - caused by the arrival of liquidity shocks that exceeds supply. In the decentralized setting, we study banks' optimal capital allocation under pure self-interest. The second centralized setting tasks a planner with maximizing collective welfare, i.e. sum of banks' utilities. We find that the decentralized equilibrium carries higher risk of liquidity shortages. As the number of banks grows, the relative gap in welfare is of constant order. We derive capitalization requirements for which decentralized banks hold the welfare-maximizing level of liquidity, and find that systemically important banks must face the greatest losses when suffering liquidity crises - suggesting that bailouts can yield perverse incentives.Finally, we study algorithmic fairness through the ethical frameworks of utilitarianism and John Rawls. Informally, these two theories of distributive justice measure the 'good' as either a population's sum of utility, or worst-off outcomes, respectively. We present a parameterized class of objective functions that interpolates between these two conflicting notions of the 'good'. By implementing this class of objectives on real-world datasets, we construct the tradeoff between utilitarian and Rawlsian notions of the 'good'. Empirically, we see that increasing model complexity can manifest strict improvements to both measures of the 'good'. This work suggests that model selection can be informed by a designer's preferences over the space of induced utilitarian and Rawlsian 'good'.
Subject Added Entry-Topical Term  
Social work.
Index Term-Uncontrolled  
Eigenvector
Index Term-Uncontrolled  
Optimization
Index Term-Uncontrolled  
Socioeconomic systems
Index Term-Uncontrolled  
Information network
Index Term-Uncontrolled  
Interbank loans
Added Entry-Corporate Name  
Princeton University Operations Research and Financial Engineering
Host Item Entry  
Dissertations Abstracts International. 84-12A.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:639345

MARC

 008240219s2023        ulk                      00        kor
■001000016932284
■00520240214100438
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379717209
■035    ▼a(MiAaPQ)AAI30490950
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a361
■1001  ▼aRigobon,  Daniel  E.  .
■24510▼aCollective  Good  and  Optimization  in  Socioeconomic  Systems▼h[electronic  resource]
■260    ▼a[S.l.]▼bPrinceton  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(145  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  84-12,  Section:  A.
■500    ▼aAdvisor:  Sircar,  Ronnie;Racz,  Miklos  Z.  .
■5021  ▼aThesis  (Ph.D.)--Princeton  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aOptimization  is  fundamentally  grounded  in  perspective  -  one  party's  desired  outcome  may  induce  unintended  harm  on  another.  Such  cases  of  misalignment  between  designers'  incentives  and  collective  good  therefore  demand  attention,  especially  when  consequences  are  meaningful  for  society.  To  this  end,  we  study  three  settings  in  which  individualistic  optimization  and  social  good  can  conflict.First,  we  study  how  a  centralized  planner  can  modify  the  structure  of  a  social  or  information  network  to  reduce  polarization.  By  formulating  and  analyzing  a  greedy  approach  to  the  planner's  problem,  we  motivate  two  practical  heuristics:  coordinate  descent  and  disagreement-seeking.  We  also  introduce  a  setting  where  the  population's  innate  opinions  are  adversarially  chosen,  which  reduces  to  maximization  of  the  Laplacian's  spectral  gap.  We  motivate  a  heuristic  that  adds  edges  spanning  the  cut  induced  by  the  spectral  gap's  eigenvector.  These  three  heuristics  are  evaluated  on  real-world  and  synthetic  networks.  We  observe  that  connecting  disagreeing  users  is  consistently  effective,  suggesting  that  the  incentives  of  individuals  and  recommender  systems  may  reinforce  polarization.Second,  we  build  a  model  of  the  financial  system  in  which  banks  control  both  their  supply  of  liquidity,  through  cash  holdings,  and  their  exposures  to  risky  interbank  loans.  The  value  of  interbank  loans  drops  when  borrowing  banks  suffers  liquidity  shortages  -  caused  by  the  arrival  of  liquidity  shocks  that  exceeds  supply.  In  the  decentralized  setting,  we  study  banks'  optimal  capital  allocation  under  pure  self-interest.  The  second  centralized  setting  tasks  a  planner  with  maximizing  collective  welfare,  i.e.  sum  of  banks'  utilities.  We  find  that  the  decentralized  equilibrium  carries  higher  risk  of  liquidity  shortages.  As  the  number  of  banks  grows,  the  relative  gap  in  welfare  is  of  constant  order.  We  derive  capitalization  requirements  for  which  decentralized  banks  hold  the  welfare-maximizing  level  of  liquidity,  and  find  that  systemically  important  banks  must  face  the  greatest  losses  when  suffering  liquidity  crises  -  suggesting  that  bailouts  can  yield  perverse  incentives.Finally,  we  study  algorithmic  fairness  through  the  ethical  frameworks  of  utilitarianism  and  John  Rawls.  Informally,  these  two  theories  of  distributive  justice  measure  the  'good'  as  either  a  population's  sum  of  utility,  or  worst-off  outcomes,  respectively.  We  present  a  parameterized  class  of  objective  functions  that  interpolates  between  these  two  conflicting  notions  of  the  'good'.  By  implementing  this  class  of  objectives  on  real-world  datasets,  we  construct  the  tradeoff  between  utilitarian  and  Rawlsian  notions  of  the  'good'.  Empirically,  we  see  that  increasing  model  complexity  can  manifest  strict  improvements  to  both  measures  of  the  'good'.  This  work  suggests  that  model  selection  can  be  informed  by  a  designer's  preferences  over  the  space  of  induced  utilitarian  and  Rawlsian  'good'.
■590    ▼aSchool  code:  0181.
■650  4▼aSocial  work.
■653    ▼aEigenvector
■653    ▼aOptimization
■653    ▼aSocioeconomic  systems
■653    ▼aInformation  network
■653    ▼aInterbank  loans
■690    ▼a0796
■690    ▼a0770
■690    ▼a0452
■71020▼aPrinceton  University▼bOperations  Research  and  Financial  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g84-12A.
■773    ▼tDissertation  Abstract  International
■790    ▼a0181
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16932284▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Buch Status

    • Reservierung
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Meine Mappe
    Sammlungen
    Registrierungsnummer callnumber Standort Verkehr Status Verkehr Info
    TQ0025276 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Kredite nur für Ihre Daten gebucht werden. Wenn Sie buchen möchten Reservierungen, klicken Sie auf den Button.

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치