본문

서브메뉴

Multiscale Modeling with Meshfree Methods- [electronic resource]
ข้อมูลเนื้อหา
Multiscale Modeling with Meshfree Methods- [electronic resource]
자료유형  
 학위논문
Control Number  
0016935346
International Standard Book Number  
9798380622196
Dewey Decimal Classification Number  
519
Main Entry-Personal Name  
Xu, Wentao.
Publication, Distribution, etc. (Imprint  
[S.l.] : Columbia University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(162 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-04, Section: B.
General Note  
Advisor: Fish, Jacob;Spiegelman, Marc.
Dissertation Note  
Thesis (Ph.D.)--Columbia University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Multiscale modeling has become an important tool in material mechanics because material behavior can exhibit varied properties across different length scales. The use of multiscale modeling is essential for accurately capturing these characteristics and predicting material behavior. Mesh-free methods have also been gaining attention in recent years due to their innate ability to handle complex geometries and large deformations. These methods provide greater flexibility and efficiency in modeling complex material behavior, especially for problems involving discontinuities, such as fractures and cracks. Moreover, mesh-free methods can be easily extended to multiple lengths and time scales, making them particularly suitable for multiscale modeling.The thesis focuses on two specific problems of multiscale modeling with mesh-free methods. The first problem is the atomistically informed constitutive model for the study of high-pressure induced densification of silica glass. Molecular Dynamics (MD) simulations are carried out to study the atomistic level responses of fused silica under different pressure and strain-rate levels, Based on the data obtained from the MD simulations, a novel continuum-based multiplicative hyper-elasto-plasticity model that accounts for the anomalous densification behavior is developed and then parameterized using polynomial regression and deep learning techniques. To incorporate dynamic damage evolution, a plasticity-damage variable that controls the shrinkage of the yield surface is introduced and integrated into the elasto-plasticity model. The resulting coupled elasto-plasticity-damage model is reformulated to a non-ordinary state-based peridynamics (NOSB-PD) model for the computational efficiency of impact simulations. The developed peridynamics (PD) model reproduces coarse-scale quantities of interest found in MD simulations and can simulate at a component level. Finally, the proposed atomistically-informed multiplicative hyper-elasto-plasticity-damage model has been validated against limited available experimental results for the simulation of hyper-velocity impact simulation of projectiles on silica glass targets.The second problem addressed in the thesis involves the upscaling approach for multi-porosity media, analyzed using the so-called MultiSPH method, which is a sequential SPH (Smoothed Particle Hydrodynamics) solver across multiple scales. Multi-porosity media is commonly found in natural and industrial materials, and their behavior is not easily captured with traditional numerical methods. The upscaling approach presented in the thesis is demonstrated on a porous medium consisting of three scales, it involves using SPH methods to characterize the behavior of individual pores at the microscopic scale and then using a homogenization technique to upscale to the meso and macroscopic level. The accuracy of the MultiSPH approach is confirmed by comparing the results with analytical solutions for simple microstructures, as well as detailed single-scale SPH simulations and experimental data for more complex microstructures.
Subject Added Entry-Topical Term  
Applied mathematics.
Subject Added Entry-Topical Term  
Mechanics.
Subject Added Entry-Topical Term  
Computer science.
Index Term-Uncontrolled  
Asymptotic expansion
Index Term-Uncontrolled  
Constitutive modeling
Index Term-Uncontrolled  
Mesh-free methods
Index Term-Uncontrolled  
Molecular dynamics
Index Term-Uncontrolled  
Multiscale modeling
Index Term-Uncontrolled  
Peridynamics
Added Entry-Corporate Name  
Columbia University Applied Mathematics
Host Item Entry  
Dissertations Abstracts International. 85-04B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:639324
New Books MORE
최근 3년간 통계입니다.

ค้นหาข้อมูลรายละเอียด

  • จองห้องพัก
  • 캠퍼스간 도서대출
  • 서가에 없는 책 신고
  • โฟลเดอร์ของฉัน
วัสดุ
Reg No. Call No. ตำแหน่งที่ตั้ง สถานะ ยืมข้อมูล
TQ0025255 T   원문자료 열람가능/출력가능 열람가능/출력가능
마이폴더 부재도서신고

* จองมีอยู่ในหนังสือยืม เพื่อให้การสำรองที่นั่งคลิกที่ปุ่มจองห้องพัก

해당 도서를 다른 이용자가 함께 대출한 도서

Related books

Related Popular Books

도서위치