본문

서브메뉴

Soft-Reset Control and Optimization- [electronic resource]
Soft-Reset Control and Optimization- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016933193
International Standard Book Number  
9798380153805
Dewey Decimal Classification Number  
001
Main Entry-Personal Name  
Le, Justin Huynh.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of California, Santa Barbara., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(149 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-03, Section: B.
General Note  
Advisor: Teel, Andrew R. .
Dissertation Note  
Thesis (Ph.D.)--University of California, Santa Barbara, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Reset control is a technique that augments traditional dynamic feedback controllers with a mechanism to adaptively or periodically reset a memory state in such a way as to improve transient closed-loop behaviors such as overshoot and settling time. It has been shown to overcome inherent limitations of linear time-invariant controllers, enabling performance improvements in a wide variety of applications, including industrial high-precision motion systems and electromechanical automotive systems. As reset control finds broader applications, it faces challenges in implementation and analysis, especially due to the prevalence of nonlinearities, such as those arising in the dynamics of robotic and vehicular systems, as well as those arising in the cost functions that are to be optimized in such systems. One challenge lies in the need for a feature known as temporal regularization, which is generally necessary to guarantee robust stability properties of reset control systems and can be difficult to implement effectively while preserving benefits of resets. Another challenge lies in the inherent discontinuity of control signals produced by reset controllers, which can be detrimental to hardware in physical systems. This dissertation studies the recently introduced notion of soft resetting, which addresses the above limitations by implementing reset behaviors in an approximate sense, allowing resets to occur gradually rather than instantaneously and doing so with tunable fidelity of approximation. It is shown that, if a traditional reset controller admits a strongly convex energy function that certifies passivity, there exists a soft-reset controller that approximates the behavior of the traditional controller while inheriting its passivity properties. The implications of this result are discussed for nonlinear and multi-agent problems having nonlinear cost functions to be optimized in steady state. Then, connections are drawn between discrete-time analogues of soft-reset systems and accelerated gradient methods for numerical optimization, for which resetting has historically been referred to as restarting and has been shown to improve convergence behaviors in applications such as machine learning. Specifically, for convex problems, linear matrix inequalities are constructed for numerically certifying exponential convergence, while for nonconvex problems, asymptotic stability in probability of global minima is studied for a class of stochastically perturbed accelerated gradient methods with resets. Soft resetting is numerically demonstrated on various problems, including vehicular formation control and online parameter identification.
Subject Added Entry-Topical Term  
Systems science.
Subject Added Entry-Topical Term  
Applied mathematics.
Index Term-Uncontrolled  
Optimization
Index Term-Uncontrolled  
Reset control
Index Term-Uncontrolled  
Online parameter
Index Term-Uncontrolled  
Automotive systems
Added Entry-Corporate Name  
University of California, Santa Barbara Electrical & Computer Engineering
Host Item Entry  
Dissertations Abstracts International. 85-03B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:639294

MARC

 008240219s2023        ulk                      00        kor
■001000016933193
■00520240214101216
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798380153805
■035    ▼a(MiAaPQ)AAI30525938
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a001
■1001  ▼aLe,  Justin  Huynh.
■24510▼aSoft-Reset  Control  and  Optimization▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  California,  Santa  Barbara.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(149  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-03,  Section:  B.
■500    ▼aAdvisor:  Teel,  Andrew  R.  .
■5021  ▼aThesis  (Ph.D.)--University  of  California,  Santa  Barbara,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aReset  control  is  a  technique  that  augments  traditional  dynamic  feedback  controllers  with  a  mechanism  to  adaptively  or  periodically  reset  a  memory  state  in  such  a  way  as  to  improve  transient  closed-loop  behaviors  such  as  overshoot  and  settling  time.  It  has  been  shown  to  overcome  inherent  limitations  of  linear  time-invariant  controllers,  enabling  performance  improvements  in  a  wide  variety  of  applications,  including  industrial  high-precision  motion  systems  and  electromechanical  automotive  systems.  As  reset  control  finds  broader  applications,  it  faces  challenges  in  implementation  and  analysis,  especially  due  to  the  prevalence  of  nonlinearities,  such  as  those  arising  in  the  dynamics  of  robotic  and  vehicular  systems,  as  well  as  those  arising  in  the  cost  functions  that  are  to  be  optimized  in  such  systems.  One  challenge  lies  in  the  need  for  a  feature  known  as  temporal  regularization,  which  is  generally  necessary  to  guarantee  robust  stability  properties  of  reset  control  systems  and  can  be  difficult  to  implement  effectively  while  preserving  benefits  of  resets.  Another  challenge  lies  in  the  inherent  discontinuity  of  control  signals  produced  by  reset  controllers,  which  can  be  detrimental  to  hardware  in  physical  systems.  This  dissertation  studies  the  recently  introduced  notion  of  soft  resetting,  which  addresses  the  above  limitations  by  implementing  reset  behaviors  in  an  approximate  sense,  allowing  resets  to  occur  gradually  rather  than  instantaneously  and  doing  so  with  tunable  fidelity  of  approximation.  It  is  shown  that,  if  a  traditional  reset  controller  admits  a  strongly  convex  energy  function  that  certifies  passivity,  there  exists  a  soft-reset  controller  that  approximates  the  behavior  of  the  traditional  controller  while  inheriting  its  passivity  properties.  The  implications  of  this  result  are  discussed  for  nonlinear  and  multi-agent  problems  having  nonlinear  cost  functions  to  be  optimized  in  steady  state.  Then,  connections  are  drawn  between  discrete-time  analogues  of  soft-reset  systems  and  accelerated  gradient  methods  for  numerical  optimization,  for  which  resetting  has  historically  been  referred  to  as  restarting  and  has  been  shown  to  improve  convergence  behaviors  in  applications  such  as  machine  learning.  Specifically,  for  convex  problems,  linear  matrix  inequalities  are  constructed  for  numerically  certifying  exponential  convergence,  while  for  nonconvex  problems,  asymptotic  stability  in  probability  of  global  minima  is  studied  for  a  class  of  stochastically  perturbed  accelerated  gradient  methods  with  resets.  Soft  resetting  is  numerically  demonstrated  on  various  problems,  including  vehicular  formation  control  and  online  parameter  identification.
■590    ▼aSchool  code:  0035.
■650  4▼aSystems  science.
■650  4▼aApplied  mathematics.
■653    ▼aOptimization
■653    ▼aReset  control
■653    ▼aOnline  parameter
■653    ▼aAutomotive  systems
■690    ▼a0790
■690    ▼a0364
■71020▼aUniversity  of  California,  Santa  Barbara▼bElectrical  &  Computer  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g85-03B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0035
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16933193▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0025221 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치