본문

서브메뉴

Classical and Quantum Physics-Enhanced Machine Learning Algorithms in the Ordered and Chaotic Regimes- [electronic resource]
Classical and Quantum Physics-Enhanced Machine Learning Algorithms in the Ordered and Chaotic Regimes- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016932880
International Standard Book Number  
9798379871154
Dewey Decimal Classification Number  
517
Main Entry-Personal Name  
Holliday, Elliott Gregory.
Publication, Distribution, etc. (Imprint  
[S.l.] : North Carolina State University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(107 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
General Note  
Advisor: Kumah, Divine;LeBlanc, Sharonda;Ruffino, Rico;Lindner, John F.;Daniels, Karen;Ditto, William L.
Dissertation Note  
Thesis (Ph.D.)--North Carolina State University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Artificial neural networks (ANN) and machine learning have become critical for advancements in science, technology, and daily life. To expand the resources available to physicists for making discoveries and contributions to the field of physics, can we solve classical and quantum physics problems that exhibit both order and chaos using a neural network? Can we improve a neural network's ability to solve physics problems by giving it an internal physics intuition? Noting that calculus lies at the heart of both machine learning algorithms and physics, this thesis incorporates physics into the training process of ANNs to forecast classical Hamiltonian dynamical systems that exhibit both order and chaos such as the Henon-Heiles stellar potential, chaotic billiards, and the double pendulum. While the ANN is only given a singular formalism or set of constraints, what additional knowledge do we discover upon giving a physics formalism to the neural network? I find doing so recovers more about the system than what was inputted such as the energy, the dimensionality, and the fraction of chaotic orbits for a given energy range. While the Hamiltonian requires canonical coordinates, it also expands on the previous algorithm to forecast dynamics without canonical coordinates for the Lotka-Volterra predator-prey model and a video of a wooden pendulum clock. This thesis also develops this idea into quantum mechanics and explores the result of giving an ANN the Schrodinger equation so that it may recover eigenfunctions and energies. This method is tested on previously studied one- and twodimensional systems like the infinite square well and simple harmonic oscillator and two-dimensional infinite potential wells that classically exhibit order and chaos, such as elliptical, triangular, and cardioid-shaped wells. Physics-enhanced machine learning algorithms have the potential to improve how advances in physics and science are made but also could improve current ANNs by giving them scientific principles and knowledge.
Subject Added Entry-Topical Term  
Calculus.
Subject Added Entry-Topical Term  
Neurons.
Subject Added Entry-Topical Term  
Physics.
Subject Added Entry-Topical Term  
Partial differential equations.
Subject Added Entry-Topical Term  
Neural networks.
Subject Added Entry-Topical Term  
Eigenvalues.
Subject Added Entry-Topical Term  
Energy.
Subject Added Entry-Topical Term  
Billiards.
Subject Added Entry-Topical Term  
Mathematics.
Subject Added Entry-Topical Term  
Quantum physics.
Added Entry-Corporate Name  
North Carolina State University.
Host Item Entry  
Dissertations Abstracts International. 85-01B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:639195

MARC

 008240219s2023        ulk                      00        kor
■001000016932880
■00520240214100557
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379871154
■035    ▼a(MiAaPQ)AAI30516330
■035    ▼a(MiAaPQ)NCState_Univ18402040852
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a517
■1001  ▼aHolliday,  Elliott  Gregory.
■24510▼aClassical  and  Quantum  Physics-Enhanced  Machine  Learning  Algorithms  in  the  Ordered  and  Chaotic  Regimes▼h[electronic  resource]
■260    ▼a[S.l.]▼bNorth  Carolina  State  University.  ▼c2023
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2023
■300    ▼a1  online  resource(107  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-01,  Section:  B.
■500    ▼aAdvisor:  Kumah,  Divine;LeBlanc,  Sharonda;Ruffino,  Rico;Lindner,  John  F.;Daniels,  Karen;Ditto,  William  L.
■5021  ▼aThesis  (Ph.D.)--North  Carolina  State  University,  2023.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aArtificial  neural  networks  (ANN)  and  machine  learning  have  become  critical  for  advancements  in  science,  technology,  and  daily  life.  To  expand  the  resources  available  to  physicists  for  making  discoveries  and  contributions  to  the  field  of  physics,  can  we  solve  classical  and  quantum  physics  problems  that  exhibit  both  order  and  chaos  using  a  neural  network?  Can  we  improve  a  neural  network's  ability  to  solve  physics  problems  by  giving  it  an  internal  physics  intuition?  Noting  that  calculus  lies  at  the  heart  of  both  machine  learning  algorithms  and  physics,  this  thesis  incorporates  physics  into  the  training  process  of  ANNs  to  forecast  classical  Hamiltonian  dynamical  systems  that  exhibit  both  order  and  chaos  such  as  the  Henon-Heiles  stellar  potential,  chaotic  billiards,  and  the  double  pendulum.  While  the  ANN  is  only  given  a  singular  formalism  or  set  of  constraints,  what  additional  knowledge  do  we  discover  upon  giving  a  physics  formalism  to  the  neural  network?  I  find  doing  so  recovers  more  about  the  system  than  what  was  inputted  such  as  the  energy,  the  dimensionality,  and  the  fraction  of  chaotic  orbits  for  a  given  energy  range.  While  the  Hamiltonian  requires  canonical  coordinates,  it  also  expands  on  the  previous  algorithm  to  forecast  dynamics  without  canonical  coordinates  for  the  Lotka-Volterra  predator-prey  model  and  a  video  of  a  wooden  pendulum  clock.  This  thesis  also  develops  this  idea  into  quantum  mechanics  and  explores  the  result  of  giving  an  ANN  the  Schrodinger  equation  so  that  it  may  recover  eigenfunctions  and  energies.  This  method  is  tested  on  previously  studied  one-  and  twodimensional  systems  like  the  infinite  square  well  and  simple  harmonic  oscillator  and  two-dimensional  infinite  potential  wells  that  classically  exhibit  order  and  chaos,  such  as  elliptical,  triangular,  and  cardioid-shaped  wells.  Physics-enhanced  machine  learning  algorithms  have  the  potential  to  improve  how  advances  in  physics  and  science  are  made  but  also  could  improve  current  ANNs  by  giving  them  scientific  principles  and  knowledge.
■590    ▼aSchool  code:  0155.
■650  4▼aCalculus.
■650  4▼aNeurons.
■650  4▼aPhysics.
■650  4▼aPartial  differential  equations.
■650  4▼aNeural  networks.
■650  4▼aEigenvalues.
■650  4▼aEnergy.
■650  4▼aBilliards.
■650  4▼aMathematics.
■650  4▼aQuantum  physics.
■690    ▼a0791
■690    ▼a0800
■690    ▼a0605
■690    ▼a0405
■690    ▼a0599
■71020▼aNorth  Carolina  State  University.
■7730  ▼tDissertations  Abstracts  International▼g85-01B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0155
■791    ▼aPh.D.
■792    ▼a2023
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16932880▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    詳細情報

    • 予約
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 私のフォルダ
    資料
    登録番号 請求記号 場所 ステータス 情報を貸す
    TQ0025122 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *ご予約は、借入帳でご利用いただけます。予約をするには、予約ボタンをクリックしてください

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치