본문

서브메뉴

The Role of Oxidative Stress in Remodeling the Cardiac Microtubule Cytoskeleton- [electronic resource]
The Role of Oxidative Stress in Remodeling the Cardiac Microtubule Cytoskeleton- [electronic resource]

상세정보

자료유형  
 학위논문
Control Number  
0016930948
International Standard Book Number  
9798379942663
Dewey Decimal Classification Number  
574.191
Main Entry-Personal Name  
Goldblum, Rebecca R.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Minnesota., 2021
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2021
Physical Description  
1 online resource(147 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
General Note  
Advisor: Gardner, Melissa.
Dissertation Note  
Thesis (Ph.D.)--University of Minnesota, 2021.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Microtubules are cylindrical cytoskeletal polymers composed of α/β-tubulin heterodimers that make up an ordered tubulin lattice. In cells, microtubules form a network that is a key component of the cellular cytoskeleton. Under pathological conditions of oxidative stress, we and others have found that cardiomyocytes, the contractile cells in the heart, display a denser microtubule cytoskeleton, which may lead to the progressive structural and functional cellular changes associated with myocardial ischemia and systolic dysfunction. This reorganization of the microtubule network occurs despite only small increases in tubulin expression, suggesting that alterations to microtubule length regulation and stability are involved. Using biophysical reconstitution experiments and live-cell imaging, we found that oxidative stress may synergistically increase the density of microtubules inside of cells by simultaneously increasing the length of dynamic, short-lived microtubules, while fostering the longevity of stable, long-lived microtubules. We found that microtubules subjected to oxidative stress undergo cysteine oxidation, and our electron and fluorescence microscopy experiments revealed that the locations of oxidized tubulin subunits within the microtubule had structural damage within the cylindrical tubulin lattice, consisting of holes and lattice openings. For dynamic microtubules, incorporation of stabilizing GTP-tubulin into these damaged lattice regions led to an increased frequency of rescue events (the transition from shortening to growth), and thus longer microtubules. For long-lived microtubules, these same structural defects facilitate entry of the enzyme αTAT1 into the microtubule lumen, where it catalyzes the acetylation of α-tubulin. This intraluminal acetylation has been shown to increase the lifetime of stable microtubules by conferring mechanical stability to the microtubule lattice. In this way, oxidative stress triggers a dramatic, pathogenic shift from a sparse microtubule network into a dense, longitudinally aligned microtubule network inside of cardiac myocytes, likely contributing to increased cellular stiffness and contractile dysfunction. Our results provide insight into myocardial changes in ischemic heart disease by describing a mechanism for the dramatic remodeling of the microtubule cytoskeletal network within cardiac myocytes subjected to oxidative stress.
Subject Added Entry-Topical Term  
Biophysics.
Subject Added Entry-Topical Term  
Biochemistry.
Subject Added Entry-Topical Term  
Cellular biology.
Index Term-Uncontrolled  
Acetylation
Index Term-Uncontrolled  
Cardiac myocytes
Index Term-Uncontrolled  
Microtubules
Index Term-Uncontrolled  
Oxidative stress
Index Term-Uncontrolled  
Tubulin
Index Term-Uncontrolled  
Microtubule cytoskeleton
Added Entry-Corporate Name  
University of Minnesota Biochemistry Molecular Bio and Biophysics
Host Item Entry  
Dissertations Abstracts International. 85-01B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:639190

MARC

 008240219s2021        ulk                      00        kor
■001000016930948
■00520240214095841
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798379942663
■035    ▼a(MiAaPQ)AAI28540193
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a574.191
■1001  ▼aGoldblum,  Rebecca  R.
■24510▼aThe  Role  of  Oxidative  Stress  in  Remodeling  the  Cardiac  Microtubule  Cytoskeleton▼h[electronic  resource]
■260    ▼a[S.l.]▼bUniversity  of  Minnesota.  ▼c2021
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2021
■300    ▼a1  online  resource(147  p.)
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-01,  Section:  B.
■500    ▼aAdvisor:  Gardner,  Melissa.
■5021  ▼aThesis  (Ph.D.)--University  of  Minnesota,  2021.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aMicrotubules  are  cylindrical  cytoskeletal  polymers  composed  of  α/β-tubulin  heterodimers  that  make  up  an  ordered  tubulin  lattice.  In  cells,  microtubules  form  a  network  that  is  a  key  component  of  the  cellular  cytoskeleton.  Under  pathological  conditions  of  oxidative  stress,  we  and  others  have  found  that  cardiomyocytes,  the  contractile  cells  in  the  heart,  display  a  denser  microtubule  cytoskeleton,  which  may  lead  to  the  progressive  structural  and  functional  cellular  changes  associated  with  myocardial  ischemia  and  systolic  dysfunction.  This  reorganization  of  the  microtubule  network  occurs  despite  only  small  increases  in  tubulin  expression,  suggesting  that  alterations  to  microtubule  length  regulation  and  stability  are  involved.  Using  biophysical  reconstitution  experiments  and  live-cell  imaging,  we  found  that  oxidative  stress  may  synergistically  increase  the  density  of  microtubules  inside  of  cells  by  simultaneously  increasing  the  length  of  dynamic,  short-lived  microtubules,  while  fostering  the  longevity  of  stable,  long-lived  microtubules.  We  found  that  microtubules  subjected  to  oxidative  stress  undergo  cysteine  oxidation,  and  our  electron  and  fluorescence  microscopy  experiments  revealed  that  the  locations  of  oxidized  tubulin  subunits  within  the  microtubule  had  structural  damage  within  the  cylindrical  tubulin  lattice,  consisting  of  holes  and  lattice  openings.  For  dynamic  microtubules,  incorporation  of  stabilizing  GTP-tubulin  into  these  damaged  lattice  regions  led  to  an  increased  frequency  of  rescue  events  (the  transition  from  shortening  to  growth),  and  thus  longer  microtubules.  For  long-lived  microtubules,  these  same  structural  defects  facilitate  entry  of  the  enzyme  αTAT1  into  the  microtubule  lumen,  where  it  catalyzes  the  acetylation  of  α-tubulin.  This  intraluminal  acetylation  has  been  shown  to  increase  the  lifetime  of  stable  microtubules  by  conferring  mechanical  stability  to  the  microtubule  lattice.  In  this  way,  oxidative  stress  triggers  a  dramatic,  pathogenic  shift  from  a  sparse  microtubule  network  into  a  dense,  longitudinally  aligned  microtubule  network  inside  of  cardiac  myocytes,  likely  contributing  to  increased  cellular  stiffness  and  contractile  dysfunction.  Our  results  provide  insight  into  myocardial  changes  in  ischemic  heart  disease  by  describing  a  mechanism  for  the  dramatic  remodeling  of  the  microtubule  cytoskeletal  network  within  cardiac  myocytes  subjected  to  oxidative  stress.
■590    ▼aSchool  code:  0130.
■650  4▼aBiophysics.
■650  4▼aBiochemistry.
■650  4▼aCellular  biology.
■653    ▼aAcetylation
■653    ▼aCardiac  myocytes
■653    ▼aMicrotubules
■653    ▼aOxidative  stress
■653    ▼aTubulin
■653    ▼aMicrotubule  cytoskeleton
■690    ▼a0786
■690    ▼a0487
■690    ▼a0379
■71020▼aUniversity  of  Minnesota▼bBiochemistry,  Molecular  Bio,  and  Biophysics.
■7730  ▼tDissertations  Abstracts  International▼g85-01B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0130
■791    ▼aPh.D.
■792    ▼a2021
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T16930948▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202402▼f2024

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0025104 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치