본문

서브메뉴

Performance Analysis and Visualization Tools to Support the Codesign of Next Generation Computer Systems
Performance Analysis and Visualization Tools to Support the Codesign of Next Generation Computer Systems

상세정보

자료유형  
 학위논문
Control Number  
0015493002
International Standard Book Number  
9781392498545
Dewey Decimal Classification Number  
004
Main Entry-Personal Name  
Ross, Caitlin J.
Publication, Distribution, etc. (Imprint  
[Sl] : Rensselaer Polytechnic Institute, 2019
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2019
Physical Description  
128 p
General Note  
Source: Dissertations Abstracts International, Volume: 81-06, Section: B.
General Note  
Advisor: Carothers, Christopher D.
Dissertation Note  
Thesis (Ph.D.)--Rensselaer Polytechnic Institute, 2019.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Discrete event simulation is a cost-effective tool for exploring the design space of next generation computer systems. Optimistic synchronization algorithms for PDES, such as Time Warp, allow for a model's inherent parallelism to be discovered using an out-of-order event detection and recovery scheme. When events are processed out of timestamp order, the simulation is rolled back to a prior state and events are re-executed in the correct order. Although optimistic protocols can be highly scalable, optimizing optimistic simulations to minimize time spent performing rolling backs is not a trivial task due to the number of factors that can affect the rollback behavior of the simulation.In this work, we demonstrate the efficacy of discrete event simulation in evaluating and improving the performance of parallel and distributed scientific analysis systems, such as the MG-RAST metagenomics analysis service provided by Argonne National Laboratory. We propose hardware and job scheduling changes to their system that can improve scalability under increased user workloads that are anticipated in the future. We use event-driven simulation to evaluate the proposed changes and compare them to the current infrastructure and job scheduling policies. However, the simulation exhibits poor parallel performance, which limits the size of the workloads able to be simulated for MG-RAST. This highlights the need for scalable analysis and visualization tools for use in optimistic PDES that can be used to gain insights to their rollback behavior and performance.To better our understanding of optimistic PDES, a dynamic instrumentation layer was introduced into the ROSS simulation framework that allows model developers to collect a variety of metrics across the model and simulation engine software layers. Because the instrumentation has the potential to collect large amounts of data that is infeasible for either storing to disk or transferring over a network from the supercomputer running the simulation to another system for analysis, we also developed the ROSS In Situ Analysis system (RISA) that can perform data reduction while the simulation data resides in memory. We demonstrate the usefulness of our instrumentation and analysis tools by performing visual analyses of high performance computing (HPC) network models built on top of the ROSS framework. With the visual analysis, we are able to find load and communication imbalances in the simulation and determine their causes. In addition, we perform perturbation studies of both the ROSS instrumentation and RISA. This compares instrumented and non-instrumented simulations to ensure that these tools do not significantly affect simulation performance nor introduce new performance bottlenecks.Finally, we also explore the use of three-dimensional animations for understanding both the time series model data as well as optimistic PDES performance of the CODES network models. Typically these simulations are visualized using information visualization techniques such as parallel coordinates and radial diagrams. However, adding spatial data to the compute nodes and routers of the HPC networks enables the visualization of simulation data in a context familiar with simulation users, such as network architects. Replaying time series model data, such as network congestion, over the network visualizations has helped to provide insight to hotspots that occur in HPC networks during simulation, and enable a visual comparison of different networks.
Subject Added Entry-Topical Term  
Computer science
Added Entry-Corporate Name  
Rensselaer Polytechnic Institute Computer Science
Host Item Entry  
Dissertations Abstracts International. 81-06B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:569762

MARC

 008200131s2019                                          c    eng  d
■001000015493002
■00520200217181921
■020    ▼a9781392498545
■035    ▼a(MiAaPQ)AAI22587529
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a004
■1001  ▼aRoss,  Caitlin  J.
■24510▼aPerformance  Analysis  and  Visualization  Tools  to  Support  the  Codesign  of  Next  Generation  Computer  Systems
■260    ▼a[Sl]▼bRensselaer  Polytechnic  Institute▼c2019
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2019
■300    ▼a128  p
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  81-06,  Section:  B.
■500    ▼aAdvisor:  Carothers,  Christopher  D.
■5021  ▼aThesis  (Ph.D.)--Rensselaer  Polytechnic  Institute,  2019.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aDiscrete  event  simulation  is  a  cost-effective  tool  for  exploring  the  design  space  of  next  generation  computer  systems.  Optimistic  synchronization  algorithms  for  PDES,  such  as  Time  Warp,  allow  for  a  model's  inherent  parallelism  to  be  discovered  using  an  out-of-order  event  detection  and  recovery  scheme.  When  events  are  processed  out  of  timestamp  order,  the  simulation  is  rolled  back  to  a  prior  state  and  events  are  re-executed  in  the  correct  order.  Although  optimistic  protocols  can  be  highly  scalable,  optimizing  optimistic  simulations  to  minimize  time  spent  performing  rolling  backs  is  not  a  trivial  task  due  to  the  number  of  factors  that  can  affect  the  rollback  behavior  of  the  simulation.In  this  work,  we  demonstrate  the  efficacy  of  discrete  event  simulation  in  evaluating  and  improving  the  performance  of  parallel  and  distributed  scientific  analysis  systems,  such  as  the  MG-RAST  metagenomics  analysis  service  provided  by  Argonne  National  Laboratory.  We  propose  hardware  and  job  scheduling  changes  to  their  system  that  can  improve  scalability  under  increased  user  workloads  that  are  anticipated  in  the  future.  We  use  event-driven  simulation  to  evaluate  the  proposed  changes  and  compare  them  to  the  current  infrastructure  and  job  scheduling  policies.  However,  the  simulation  exhibits  poor  parallel  performance,  which  limits  the  size  of  the  workloads  able  to  be  simulated  for  MG-RAST.  This  highlights  the  need  for  scalable  analysis  and  visualization  tools  for  use  in  optimistic  PDES  that  can  be  used  to  gain  insights  to  their  rollback  behavior  and  performance.To  better  our  understanding  of  optimistic  PDES,  a  dynamic  instrumentation  layer  was  introduced  into  the  ROSS  simulation  framework  that  allows  model  developers  to  collect  a  variety  of  metrics  across  the  model  and  simulation  engine  software  layers.  Because  the  instrumentation  has  the  potential  to  collect  large  amounts  of  data  that  is  infeasible  for  either  storing  to  disk  or  transferring  over  a  network  from  the  supercomputer  running  the  simulation  to  another  system  for  analysis,  we  also  developed  the  ROSS  In  Situ  Analysis  system  (RISA)  that  can  perform  data  reduction  while  the  simulation  data  resides  in  memory.  We  demonstrate  the  usefulness  of  our  instrumentation  and  analysis  tools  by  performing  visual  analyses  of  high  performance  computing  (HPC)  network  models  built  on  top  of  the  ROSS  framework.  With  the  visual  analysis,  we  are  able  to  find  load  and  communication  imbalances  in  the  simulation  and  determine  their  causes.  In  addition,  we  perform  perturbation  studies  of  both  the  ROSS  instrumentation  and  RISA.  This  compares  instrumented  and  non-instrumented  simulations  to  ensure  that  these  tools  do  not  significantly  affect  simulation  performance  nor  introduce  new  performance  bottlenecks.Finally,  we  also  explore  the  use  of  three-dimensional  animations  for  understanding  both  the  time  series  model  data  as  well  as  optimistic  PDES  performance  of  the  CODES  network  models.  Typically  these  simulations  are  visualized  using  information  visualization  techniques  such  as  parallel  coordinates  and  radial  diagrams.  However,  adding  spatial  data  to  the  compute  nodes  and  routers  of  the  HPC  networks  enables  the  visualization  of  simulation  data  in  a  context  familiar  with  simulation  users,  such  as  network  architects.  Replaying  time  series  model  data,  such  as  network  congestion,  over  the  network  visualizations  has  helped  to  provide  insight  to  hotspots  that  occur  in  HPC  networks  during  simulation,  and  enable  a  visual  comparison  of  different  networks.
■590    ▼aSchool  code:  0185.
■650  4▼aComputer  science
■690    ▼a0984
■71020▼aRensselaer  Polytechnic  Institute▼bComputer  Science.
■7730  ▼tDissertations  Abstracts  International▼g81-06B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0185
■791    ▼aPh.D.
■792    ▼a2019
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T15493002▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202002▼f2020

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0009759 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치