본문

서브메뉴

Visual Analytics Methodologies on Causality Analysis
Visual Analytics Methodologies on Causality Analysis

상세정보

자료유형  
 학위논문
Control Number  
0015493073
International Standard Book Number  
9781085691437
Dewey Decimal Classification Number  
004
Main Entry-Personal Name  
Wang, Hong.
Publication, Distribution, etc. (Imprint  
[Sl] : Arizona State University, 2019
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2019
Physical Description  
139 p
General Note  
Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
General Note  
Advisor: Maciejewski, Ross.
Dissertation Note  
Thesis (Ph.D.)--Arizona State University, 2019.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Causality analysis is the process of identifying cause-effect relationships among variables. This process is challenging because causal relationships cannot be tested solely based on statistical indicators as additional information is always needed to reduce the ambiguity caused by factors beyond those covered by the statistical test. Traditionally, controlled experiments are carried out to identify causal relationships, but recently there is a growing interest in causality analysis with observational data due to the increasing availability of data and tools. This type of analysis will often involve automatic algorithms that extract causal relations from large amounts of data and rely on expert judgment to scrutinize and verify the relations. Over-reliance on these automatic algorithms is dangerous because models trained on observational data are susceptible to bias that can be difficult to spot even with expert oversight. Visualization has proven to be effective at bridging the gap between human experts and statistical models by enabling an interactive exploration and manipulation of the data and models. This thesis develops a visual analytics framework to support the interaction between human experts and automatic models in causality analysis. Three case studies were conducted to demonstrate the application of the visual analytics framework in which feature engineering, insight generation, correlation analysis, and causality inspections were showcased.
Subject Added Entry-Topical Term  
Computer science
Added Entry-Corporate Name  
Arizona State University Computer Science
Host Item Entry  
Dissertations Abstracts International. 81-03B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:569716

MARC

 008200131s2019                                          c    eng  d
■001000015493073
■00520200217181938
■020    ▼a9781085691437
■035    ▼a(MiAaPQ)AAI22588220
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a004
■1001  ▼aWang,  Hong.
■24510▼aVisual  Analytics  Methodologies  on  Causality  Analysis
■260    ▼a[Sl]▼bArizona  State  University▼c2019
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2019
■300    ▼a139  p
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  81-03,  Section:  B.
■500    ▼aAdvisor:  Maciejewski,  Ross.
■5021  ▼aThesis  (Ph.D.)--Arizona  State  University,  2019.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aCausality  analysis  is  the  process  of  identifying  cause-effect  relationships  among  variables.  This  process  is  challenging  because  causal  relationships  cannot  be  tested  solely  based  on  statistical  indicators  as  additional  information  is  always  needed  to  reduce  the  ambiguity  caused  by  factors  beyond  those  covered  by  the  statistical  test.  Traditionally,  controlled  experiments  are  carried  out  to  identify  causal  relationships,  but  recently  there  is  a  growing  interest  in  causality  analysis  with  observational  data  due  to  the  increasing  availability  of  data  and  tools.  This  type  of  analysis  will  often  involve  automatic  algorithms  that  extract  causal  relations  from  large  amounts  of  data  and  rely  on  expert  judgment  to  scrutinize  and  verify  the  relations.  Over-reliance  on  these  automatic  algorithms  is  dangerous  because  models  trained  on  observational  data  are  susceptible  to  bias  that  can  be  difficult  to  spot  even  with  expert  oversight.  Visualization  has  proven  to  be  effective  at  bridging  the  gap  between  human  experts  and  statistical  models  by  enabling  an  interactive  exploration  and  manipulation  of  the  data  and  models.  This  thesis  develops  a  visual  analytics  framework  to  support  the  interaction  between  human  experts  and  automatic  models  in  causality  analysis.  Three  case  studies  were  conducted  to  demonstrate  the  application  of  the  visual  analytics  framework  in  which  feature  engineering,  insight  generation,  correlation  analysis,  and  causality  inspections  were  showcased.
■590    ▼aSchool  code:  0010.
■650  4▼aComputer  science
■690    ▼a0984
■71020▼aArizona  State  University▼bComputer  Science.
■7730  ▼tDissertations  Abstracts  International▼g81-03B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0010
■791    ▼aPh.D.
■792    ▼a2019
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T15493073▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202002▼f2020

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    高级搜索信息

    • 预订
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 我的文件夹
    材料
    注册编号 呼叫号码. 收藏 状态 借信息.
    TQ0009713 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *保留在借用的书可用。预订,请点击预订按钮

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치