본문

서브메뉴

Statistical and Computational Methods for Biological Data
Statistical and Computational Methods for Biological Data

상세정보

자료유형  
 학위논문
Control Number  
0015493561
International Standard Book Number  
9781085696005
Dewey Decimal Classification Number  
004
Main Entry-Personal Name  
Hao, Yuning.
Publication, Distribution, etc. (Imprint  
[Sl] : Michigan State University, 2019
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2019
Physical Description  
101 p
General Note  
Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
General Note  
Includes supplementary digital materials.
General Note  
Advisor: Xie, Yuying.
Dissertation Note  
Thesis (Ph.D.)--Michigan State University, 2019.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Restrictions on Access Note  
This item must not be added to any third party search indexes.
Summary, Etc.  
요약The development of biological data focuses on machine learning and statistical methods. In immunotherapy, gene-expression deconvolution is used to quantify different types of cells in a mixed population. It provides a highly promising solution to rapidly characterize the tumor-infiltrating immune landscape and identify cold cancers. However, a major challenge is that gene-expression data are frequently contaminated by many outliers that decrease the estimation accuracy. Thus, it is imperative to develop a robust deconvolution method that automatically decontaminates data by reliably detecting and removing outliers. Our development of an algorithm called adaptive Least Trimmed Square (aLTS) identifies outliers in regression models, allows us to effectively detect and omit the outliers, and provides us robust estimations of the coefficients. For the guarantees of the convergence property and parameters recovery, we also included certain theoretical results.Another interesting topic is the investigation of the association of phenotype responses with the identified intricate patterns in transcription factor binding sites for DNA sequences. To address these concerns, we pushed forward with a deep learning-based framework. On one hand, to capture regulatory motifs, we utilized convolution and pooling layers. On the other hand, to understand the long-term dependencies among motifs, we used position embedding and multi-head self-attention layers. We pursued the improvement of our model's overall efficacy through the integration of transfer learning and multi-task learning. To ascertain confirmed and novel transcription factor binding motifs (TFBMs), along with their relationships internally, we provided interpretations of our DNA quantification model.
Subject Added Entry-Topical Term  
Statistics
Subject Added Entry-Topical Term  
Computer science
Added Entry-Corporate Name  
Michigan State University Statistics - Doctor of Philosophy
Host Item Entry  
Dissertations Abstracts International. 81-03B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:569200

MARC

 008200131s2019                                          c    eng  d
■001000015493561
■00520200217182143
■020    ▼a9781085696005
■035    ▼a(MiAaPQ)AAI22618715
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a004
■1001  ▼aHao,  Yuning.
■24510▼aStatistical  and  Computational  Methods  for  Biological  Data
■260    ▼a[Sl]▼bMichigan  State  University▼c2019
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2019
■300    ▼a101  p
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  81-03,  Section:  B.
■500    ▼aIncludes  supplementary  digital  materials.
■500    ▼aAdvisor:  Xie,  Yuying.
■5021  ▼aThesis  (Ph.D.)--Michigan  State  University,  2019.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■506    ▼aThis  item  must  not  be  added  to  any  third  party  search  indexes.
■520    ▼aThe  development  of  biological  data  focuses  on  machine  learning  and  statistical  methods.  In  immunotherapy,  gene-expression  deconvolution  is  used  to  quantify  different  types  of  cells  in  a  mixed  population.  It  provides  a  highly  promising  solution  to  rapidly  characterize  the  tumor-infiltrating  immune  landscape  and  identify  cold  cancers.  However,  a  major  challenge  is  that  gene-expression  data  are  frequently  contaminated  by  many  outliers  that  decrease  the  estimation  accuracy.  Thus,  it  is  imperative  to  develop  a  robust  deconvolution  method  that  automatically  decontaminates  data  by  reliably  detecting  and  removing  outliers.  Our  development  of  an  algorithm  called  adaptive  Least  Trimmed  Square  (aLTS)  identifies  outliers  in  regression  models,  allows  us  to  effectively  detect  and  omit  the  outliers,  and  provides  us  robust  estimations  of  the  coefficients.  For  the  guarantees  of  the  convergence  property  and  parameters  recovery,  we  also  included  certain  theoretical  results.Another  interesting  topic  is  the  investigation  of  the  association  of  phenotype  responses  with  the  identified  intricate  patterns  in  transcription  factor  binding  sites  for  DNA  sequences.  To  address  these  concerns,  we  pushed  forward  with  a  deep  learning-based  framework.  On  one  hand,  to  capture  regulatory  motifs,  we  utilized  convolution  and  pooling  layers.  On  the  other  hand,  to  understand  the  long-term  dependencies  among  motifs,  we  used  position  embedding  and  multi-head  self-attention  layers.  We  pursued  the  improvement  of  our  model's  overall  efficacy  through  the  integration  of  transfer  learning  and  multi-task  learning.  To  ascertain  confirmed  and  novel  transcription  factor  binding  motifs  (TFBMs),  along  with  their  relationships  internally,  we  provided  interpretations  of  our  DNA  quantification  model.
■590    ▼aSchool  code:  0128.
■650  4▼aStatistics
■650  4▼aComputer  science
■690    ▼a0463
■690    ▼a0984
■71020▼aMichigan  State  University▼bStatistics  -  Doctor  of  Philosophy.
■7730  ▼tDissertations  Abstracts  International▼g81-03B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0128
■791    ▼aPh.D.
■792    ▼a2019
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T15493561▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202002▼f2020

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0009201 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치