본문

서브메뉴

Dynamic Geometry Task Design for Axiomatic Geometry: Student Engagement with Axiomatic Reasoning
Dynamic Geometry Task Design for Axiomatic Geometry: Student Engagement with Axiomatic Reasoning

상세정보

자료유형  
 학위논문
Control Number  
0015493618
International Standard Book Number  
9781088390740
Dewey Decimal Classification Number  
378
Main Entry-Personal Name  
Bae, Younggon.
Publication, Distribution, etc. (Imprint  
[Sl] : Michigan State University, 2019
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2019
Physical Description  
231 p
General Note  
Source: Dissertations Abstracts International, Volume: 81-05, Section: A.
General Note  
Advisor: Keller, Brin A.
Dissertation Note  
Thesis (Ph.D.)--Michigan State University, 2019.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Responding to calls for studies on task design and enactment using technology in geometry classroom, this dissertation connects theoretical and empirical studies to instructional practices by designing, enacting, and revising a sequence of tasks using DGEs for college students in an axiomatic geometry course. First, I discuss a set of mathematical activities using DGEs that consist the core of the task sequence in this study. I illustrate a sequence of instructional tasks designed and enacted in an axiomatic geometry course where a DGE plays a crucial role in students' mathematical activities in class. The illustration of the task sequence consists of the mathematical activities intended in the design of each task as well as student reasoning. Student work collected in the actual classroom provides pedagogical implications to revise the task sequenceSecond, I report an empirical study on students' uses of DGEs and their engagement in mathematical reasoning and axiomatic reasoning while enacting three tasks in the sequence. Students used DGEs to communicate their mathematical ideas and to examine mathematical statements describing properties of geometric objects within axiomatic systems and models of hyperbolic geometry. The analyses of this study revealed case themes describing student use of DGEs, engagement in mathematical reasoning and axiomatic reasoning, and relationships thereof. The findings of the analysis provide practical implications to revise the task design as well as theoretical implications to better understand the nature of student engagement in advanced mathematical reasoning in such technology-rich environments.At last, not the least, I address theoretical consideration on understanding of epistemic aspects of student learning in axiomatic geometry supported by technology and appropriate mathematical activities exploiting pedagogical roles of technology. I address students' epistemological shifts that have been discussed in the existing literature of student learning of advanced geometry in connection with student work collected and analyzed in the empirical study reported above. First, students make a shift in the ontological view of geometric models from Euclidean to non-Euclidean geometry, in which the geometric models are considered conscious artifacts of mathematical design. Second, students make a shift in the epistemological view of mathematical proofs from absolutism to fallibilism, in which proofs can be characterized with a variety of functions and forms. Drawing on the prior literature, I argue that making successful shifts can benefit students in axiomatic geometry and that such shifts can be facilitated by engaging in mathematical activities with supports of dynamic geometry environments. In particular, I highlight examples of student work reported in the empirical study that illustrate those different views of geometric models and mathematical proofs captured observed from students who were on the process of such shifts.
Subject Added Entry-Topical Term  
Mathematics education
Subject Added Entry-Topical Term  
Higher education
Added Entry-Corporate Name  
Michigan State University Mathematics Education - Doctor of Philosophy
Host Item Entry  
Dissertations Abstracts International. 81-05A.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:569126

MARC

 008200131s2019                                          c    eng  d
■001000015493618
■00520200217182158
■020    ▼a9781088390740
■035    ▼a(MiAaPQ)AAI22619377
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a378
■1001  ▼aBae,  Younggon.
■24510▼aDynamic  Geometry  Task  Design  for  Axiomatic  Geometry:  Student  Engagement  with  Axiomatic  Reasoning
■260    ▼a[Sl]▼bMichigan  State  University▼c2019
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2019
■300    ▼a231  p
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  81-05,  Section:  A.
■500    ▼aAdvisor:  Keller,  Brin  A.
■5021  ▼aThesis  (Ph.D.)--Michigan  State  University,  2019.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aResponding  to  calls  for  studies  on  task  design  and  enactment  using  technology  in  geometry  classroom,  this  dissertation  connects  theoretical  and  empirical  studies  to  instructional  practices  by  designing,  enacting,  and  revising  a  sequence  of  tasks  using  DGEs  for  college  students  in  an  axiomatic  geometry  course.  First,  I  discuss  a  set  of  mathematical  activities  using  DGEs  that  consist  the  core  of  the  task  sequence  in  this  study.  I  illustrate  a  sequence  of  instructional  tasks  designed  and  enacted  in  an  axiomatic  geometry  course  where  a  DGE  plays  a  crucial  role  in  students'  mathematical  activities  in  class.  The  illustration  of  the  task  sequence  consists  of  the  mathematical  activities  intended  in  the  design  of  each  task  as  well  as  student  reasoning.  Student  work  collected  in  the  actual  classroom  provides  pedagogical  implications  to  revise  the  task  sequenceSecond,  I  report  an  empirical  study  on  students'  uses  of  DGEs  and  their  engagement  in  mathematical  reasoning  and  axiomatic  reasoning  while  enacting  three  tasks  in  the  sequence.  Students  used  DGEs  to  communicate  their  mathematical  ideas  and  to  examine  mathematical  statements  describing  properties  of  geometric  objects  within  axiomatic  systems  and  models  of  hyperbolic  geometry.  The  analyses  of  this  study  revealed  case  themes  describing  student  use  of  DGEs,  engagement  in  mathematical  reasoning  and  axiomatic  reasoning,  and  relationships  thereof.  The  findings  of  the  analysis  provide  practical  implications  to  revise  the  task  design  as  well  as  theoretical  implications  to  better  understand  the  nature  of  student  engagement  in  advanced  mathematical  reasoning  in  such  technology-rich  environments.At  last,  not  the  least,  I  address  theoretical  consideration  on  understanding  of  epistemic  aspects  of  student  learning  in  axiomatic  geometry  supported  by  technology  and  appropriate  mathematical  activities  exploiting  pedagogical  roles  of  technology.  I  address  students'  epistemological  shifts  that  have  been  discussed  in  the  existing  literature  of  student  learning  of  advanced  geometry  in  connection  with  student  work  collected  and  analyzed  in  the  empirical  study  reported  above.  First,  students  make  a  shift  in  the  ontological  view  of  geometric  models  from  Euclidean  to  non-Euclidean  geometry,  in  which  the  geometric  models  are  considered  conscious  artifacts  of  mathematical  design.  Second,  students  make  a  shift  in  the  epistemological  view  of  mathematical  proofs  from  absolutism  to  fallibilism,  in  which  proofs  can  be  characterized  with  a  variety  of  functions  and  forms.  Drawing  on  the  prior  literature,  I  argue  that  making  successful  shifts  can  benefit  students  in  axiomatic  geometry  and  that  such  shifts  can  be  facilitated  by  engaging  in  mathematical  activities  with  supports  of  dynamic  geometry  environments.  In  particular,  I  highlight  examples  of  student  work  reported  in  the  empirical  study  that  illustrate  those  different  views  of  geometric  models  and  mathematical  proofs  captured  observed  from  students  who  were  on  the  process  of  such  shifts.
■590    ▼aSchool  code:  0128.
■650  4▼aMathematics  education
■650  4▼aHigher  education
■690    ▼a0280
■690    ▼a0745
■71020▼aMichigan  State  University▼bMathematics  Education  -  Doctor  of  Philosophy.
■7730  ▼tDissertations  Abstracts  International▼g81-05A.
■773    ▼tDissertation  Abstract  International
■790    ▼a0128
■791    ▼aPh.D.
■792    ▼a2019
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T15493618▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202002▼f2020

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0009127 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치