본문

서브메뉴

Multi-Policy Decision Making for Reliable Navigation in Dynamic Uncertain Environments
Multi-Policy Decision Making for Reliable Navigation in Dynamic Uncertain Environments

상세정보

자료유형  
 학위논문
Control Number  
0015494215
International Standard Book Number  
9781687928825
Dewey Decimal Classification Number  
629.8
Main Entry-Personal Name  
Mehta, Dhanvin.
Publication, Distribution, etc. (Imprint  
[Sl] : University of Michigan, 2019
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2019
Physical Description  
117 p
General Note  
Source: Dissertations Abstracts International, Volume: 81-05, Section: A.
General Note  
Advisor: Olson, Edwin.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2019.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Restrictions on Access Note  
This item must not be added to any third party search indexes.
Summary, Etc.  
요약Navigating everyday social environments, in the presence of pedestrians and other dynamic obstacles remains one of the key challenges preventing mobile robots from leaving carefully designed spaces and entering our daily lives. The complex and tightly-coupled interactions between these agents make the environment dynamic and unpredictable, posing a formidable problem for robot motion planning. Trajectory planning methods, supported by models of typical human behavior and personal space, often produce reasonable behavior. However, they do not account for the future closed-loop interactions of other agents with the trajectory being constructed. As a consequence, the trajectories are unable to anticipate cooperative interactions (such as a human yielding), or adverse interactions (such as the robot blocking the way). Ideally, the robot must account for coupled agent-agent interactions while reasoning about possible future outcomes, and then take actions to advance towards its navigational goal without inconveniencing nearby pedestrians.Multi-Policy Decision Making (MPDM) is a novel framework for autonomous navigation in dynamic, uncertain environments where the robot's trajectory is not explicitly planned, but instead, the robot dynamically switches between a set of candidate closed-loop policies, allowing it to adapt to different situations encountered in such environments. The candidate policies are evaluated based on short-term (five-second) forward simulations of samples drawn from the estimated distribution of the agents' current states. These forward simulations and thereby the cost function, capture agent-agent interactions as well as agent-robot interactions which depend on the ego-policy being evaluated.In this thesis, we propose MPDM as a new method for navigation amongst pedestrians by dynamically switching from amongst a library of closed-loop policies. Due to real-time constraints, the robot's emergent behavior is directly affected by the quality of policy evaluation. Approximating how good a policy is based on only a few forward roll-outs is difficult, especially with the large space of possible pedestrian configurations and the sensitivity of the forward simulation to the sampled configurations. Traditional methods based on Monte-Carlo sampling often missed likely, high-cost outcomes, resulting in an over-optimistic evaluation of a policy and unreliable emergent behavior. By re-formulating policy evaluation as an optimization problem and enabling the quick discovery of potentially dangerous outcomes, we make MPDM more reliable and risk-aware.Even with the increased reliability, a major limitation is that MPDM requires the system designer to provide a set of carefully hand-crafted policies as it can evaluate only a few policies reliably in real-time. We radically enhance the expressivity of MPDM by allowing policies to have continuous-valued parameters, while simultaneously satisfying real-time constraints by quickly discovering promising policy parameters through a novel iterative gradient-based algorithm. Overall, we reformulate the traditional motion planning problem and paint it in a very different light --- as a bilevel optimization problem where the robot repeatedly discovers likely high-cost outcomes and adapts its policy parameters avoid these outcomes. We demonstrate significant performance benefits through extensive experiments in simulation as well as on a physical robot platform operating in a semi-crowded environment.
Subject Added Entry-Topical Term  
Computer engineering
Subject Added Entry-Topical Term  
Transportation
Subject Added Entry-Topical Term  
Robotics
Added Entry-Corporate Name  
University of Michigan Computer Science & Engineering
Host Item Entry  
Dissertations Abstracts International. 81-05A.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:568522

MARC

 008200131s2019                                          c    eng  d
■001000015494215
■00520200217182433
■020    ▼a9781687928825
■035    ▼a(MiAaPQ)AAI27536165
■035    ▼a(MiAaPQ)umichrackham002194
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a629.8
■1001  ▼aMehta,  Dhanvin.
■24510▼aMulti-Policy  Decision  Making  for  Reliable  Navigation  in  Dynamic  Uncertain  Environments
■260    ▼a[Sl]▼bUniversity  of  Michigan▼c2019
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2019
■300    ▼a117  p
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  81-05,  Section:  A.
■500    ▼aAdvisor:  Olson,    Edwin.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2019.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■506    ▼aThis  item  must  not  be  added  to  any  third  party  search  indexes.
■520    ▼aNavigating  everyday  social  environments,  in  the  presence  of  pedestrians  and  other  dynamic  obstacles  remains  one  of  the  key  challenges  preventing  mobile  robots  from  leaving  carefully  designed  spaces  and  entering  our  daily  lives.  The  complex  and  tightly-coupled  interactions  between  these  agents  make  the  environment  dynamic  and  unpredictable,  posing  a  formidable  problem  for  robot  motion  planning.  Trajectory  planning  methods,  supported  by  models  of  typical  human  behavior  and  personal  space,  often  produce  reasonable  behavior.  However,  they  do  not  account  for  the  future  closed-loop  interactions  of  other  agents  with  the  trajectory  being  constructed.  As  a  consequence,  the  trajectories  are  unable  to  anticipate  cooperative  interactions  (such  as  a  human  yielding),  or  adverse  interactions  (such  as  the  robot  blocking  the  way).  Ideally,  the  robot  must  account  for  coupled  agent-agent  interactions  while  reasoning  about  possible  future  outcomes,  and  then  take  actions  to  advance  towards  its  navigational  goal  without  inconveniencing  nearby  pedestrians.Multi-Policy  Decision  Making  (MPDM)  is  a  novel  framework  for  autonomous  navigation  in  dynamic,  uncertain  environments  where  the  robot's  trajectory  is  not  explicitly  planned,  but  instead,  the  robot  dynamically  switches  between  a  set  of  candidate  closed-loop  policies,  allowing  it  to  adapt  to  different  situations  encountered  in  such  environments.  The  candidate  policies  are  evaluated  based  on  short-term  (five-second)  forward  simulations  of  samples  drawn  from  the  estimated  distribution  of  the  agents'  current  states.  These  forward  simulations  and  thereby  the  cost  function,  capture  agent-agent  interactions  as  well  as  agent-robot  interactions  which  depend  on  the  ego-policy  being  evaluated.In  this  thesis,  we  propose  MPDM  as  a  new  method  for  navigation  amongst  pedestrians  by  dynamically  switching  from  amongst  a  library  of  closed-loop  policies.  Due  to  real-time  constraints,  the  robot's  emergent  behavior  is  directly  affected  by  the  quality  of  policy  evaluation.  Approximating  how  good  a  policy  is  based  on  only  a  few  forward  roll-outs  is  difficult,  especially  with  the  large  space  of  possible  pedestrian  configurations  and  the  sensitivity  of  the  forward  simulation  to  the  sampled  configurations.  Traditional  methods  based  on  Monte-Carlo  sampling  often  missed  likely,  high-cost  outcomes,  resulting  in  an  over-optimistic  evaluation  of  a  policy  and  unreliable  emergent  behavior.  By  re-formulating  policy  evaluation  as  an  optimization  problem  and  enabling  the  quick  discovery  of  potentially  dangerous  outcomes,  we  make  MPDM  more  reliable  and  risk-aware.Even  with  the  increased  reliability,  a  major  limitation  is  that  MPDM  requires  the  system  designer  to  provide  a  set  of  carefully  hand-crafted  policies  as  it  can  evaluate  only  a  few  policies  reliably  in  real-time.  We  radically  enhance  the  expressivity  of  MPDM  by  allowing  policies  to  have  continuous-valued  parameters,  while  simultaneously  satisfying  real-time  constraints  by  quickly  discovering  promising  policy  parameters  through  a  novel  iterative  gradient-based  algorithm.    Overall,  we  reformulate  the  traditional  motion  planning  problem  and  paint  it  in  a  very  different  light  ---  as  a  bilevel  optimization  problem  where  the  robot  repeatedly  discovers  likely  high-cost  outcomes  and  adapts  its  policy  parameters  avoid  these  outcomes.  We  demonstrate  significant  performance  benefits  through  extensive  experiments  in  simulation  as  well  as  on  a  physical  robot  platform  operating  in  a  semi-crowded  environment.
■590    ▼aSchool  code:  0127.
■650  4▼aComputer  engineering
■650  4▼aTransportation
■650  4▼aRobotics
■690    ▼a0771
■690    ▼a0464
■690    ▼a0709
■71020▼aUniversity  of  Michigan▼bComputer  Science  &  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g81-05A.
■773    ▼tDissertation  Abstract  International
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2019
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T15494215▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202002▼f2020

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0008528 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치