본문

서브메뉴

Numerical and Compact Field Effect Transistor Models Validated for Terahertz Detection
Numerical and Compact Field Effect Transistor Models Validated for Terahertz Detection

상세정보

자료유형  
 학위논문
Control Number  
0015490881
International Standard Book Number  
9781085558266
Dewey Decimal Classification Number  
620.5
Main Entry-Personal Name  
Liu, Xueqing.
Publication, Distribution, etc. (Imprint  
[Sl] : Rensselaer Polytechnic Institute, 2019
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2019
Physical Description  
101 p
General Note  
Source: Dissertations Abstracts International, Volume: 81-02, Section: B.
General Note  
Advisor: Shur, Michael S.
Dissertation Note  
Thesis (Ph.D.)--Rensselaer Polytechnic Institute, 2019.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약TeraFETs, plasmonic field effect transistors (FETs) operating in the terahertz (THz) frequency range, have found applications as sub millimeter-wave and THz components for THz detection, mixing, imaging, etc. Responsivity is a critical parameter for TeraFETs and deserves the investigation and improvement for the advancement of high performance TeraFET detectors. Compact and numerical device models have an essential role in enabling applications for semiconductor-based terahertz technologies. Thus, it is of extreme value to the scientific community to develop effective and efficient models to propel the research and applications for the TeraFETs.In this thesis, we have developed numerical models for TeraFET detectors in Synopsys Sentaurus TCAD. The model is valid over a wide dynamic input range (from around 5 mV to 6 V). By examining the physical mechanisms in such TCAD models, experimentally-observed saturation effect at high intensity levels (above 1 V) can be understood. The effect is associated with different mechanisms depending on the material system including leakage current, velocity saturation, and avalanche effect. We also developed a compact SPICE model for heterostructure FET (HFET) THz detectors valid over a wide dynamic range (from around 1 mV to 7 V). The model incorporates the saturation effect at high intensity levels (above 1 V) by including leakage components. Furthermore, resonant detection for submicron high mobility devices are observed by including Drude inductance. The developed SPICE-compatible models for TeraFET detectors include channel segmentation and Drude inductance, and are valid from 0.1 THz to 10 THz. The developed model also show the significance of electron inertia at high THz frequencies for long channel devices. All developed models show good agreement with the analytical theory and experimental data and could be effectively used for the simulation, design, and characterization of sub-millimeter wave and Terahertz wave devices and integrated circuits.
Subject Added Entry-Topical Term  
Electrical engineering
Subject Added Entry-Topical Term  
Applied physics
Subject Added Entry-Topical Term  
Nanotechnology
Added Entry-Corporate Name  
Rensselaer Polytechnic Institute Electrical Engineering
Host Item Entry  
Dissertations Abstracts International. 81-02B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:566851

MARC

 008200131s2019                                          c    eng  d
■001000015490881
■00520200217181032
■020    ▼a9781085558266
■035    ▼a(MiAaPQ)AAI13859253
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a620.5
■1001  ▼aLiu,  Xueqing.
■24510▼aNumerical  and  Compact  Field  Effect  Transistor  Models  Validated  for  Terahertz  Detection
■260    ▼a[Sl]▼bRensselaer  Polytechnic  Institute▼c2019
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2019
■300    ▼a101  p
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  81-02,  Section:  B.
■500    ▼aAdvisor:  Shur,  Michael  S.
■5021  ▼aThesis  (Ph.D.)--Rensselaer  Polytechnic  Institute,  2019.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aTeraFETs,  plasmonic  field  effect  transistors  (FETs)  operating  in  the  terahertz  (THz)  frequency  range,  have  found  applications  as  sub  millimeter-wave  and  THz  components  for  THz  detection,  mixing,  imaging,  etc.  Responsivity  is  a  critical  parameter  for  TeraFETs  and  deserves  the  investigation  and  improvement  for  the  advancement  of  high  performance  TeraFET  detectors.  Compact  and  numerical  device  models  have  an  essential  role  in  enabling  applications  for  semiconductor-based  terahertz  technologies.  Thus,  it  is  of  extreme  value  to  the  scientific  community  to  develop  effective  and  efficient  models  to  propel  the  research  and  applications  for  the  TeraFETs.In  this  thesis,  we  have  developed  numerical  models  for  TeraFET  detectors  in  Synopsys  Sentaurus  TCAD.  The  model  is  valid  over  a  wide  dynamic  input  range  (from  around  5  mV  to  6  V).  By  examining  the  physical  mechanisms  in  such  TCAD  models,  experimentally-observed  saturation  effect  at  high  intensity  levels  (above  1  V)  can  be  understood.  The  effect  is  associated  with  different  mechanisms  depending  on  the  material  system  including  leakage  current,  velocity  saturation,  and  avalanche  effect.  We  also  developed  a  compact  SPICE  model  for  heterostructure  FET  (HFET)  THz  detectors  valid  over  a  wide  dynamic  range  (from  around  1  mV  to  7  V).  The  model  incorporates  the    saturation  effect  at  high  intensity  levels  (above  1  V)  by  including  leakage  components.  Furthermore,  resonant  detection  for  submicron  high  mobility  devices  are  observed  by  including  Drude  inductance.  The  developed  SPICE-compatible  models  for  TeraFET  detectors  include  channel  segmentation  and  Drude  inductance,  and  are  valid  from  0.1  THz  to  10  THz.  The  developed  model  also  show  the  significance  of  electron  inertia  at  high  THz  frequencies  for  long  channel  devices.  All  developed  models  show  good  agreement  with  the  analytical  theory  and  experimental  data  and  could  be  effectively  used  for  the  simulation,  design,  and  characterization  of  sub-millimeter  wave  and  Terahertz  wave  devices  and  integrated  circuits.
■590    ▼aSchool  code:  0185.
■650  4▼aElectrical  engineering
■650  4▼aApplied  physics
■650  4▼aNanotechnology
■690    ▼a0544
■690    ▼a0652
■690    ▼a0215
■71020▼aRensselaer  Polytechnic  Institute▼bElectrical  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g81-02B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0185
■791    ▼aPh.D.
■792    ▼a2019
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T15490881▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202002▼f2020

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0006872 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치