본문

서브메뉴

Entanglement and Geometry
Entanglement and Geometry

상세정보

자료유형  
 학위논문
Control Number  
0015491732
International Standard Book Number  
9781392369944
Dewey Decimal Classification Number  
530
Main Entry-Personal Name  
Akers, Christopher.
Publication, Distribution, etc. (Imprint  
[Sl] : University of California, Berkeley, 2019
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2019
Physical Description  
150 p
General Note  
Source: Dissertations Abstracts International, Volume: 81-06, Section: B.
General Note  
Advisor: Bousso, Raphael.
Dissertation Note  
Thesis (Ph.D.)--University of California, Berkeley, 2019.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약There is now strong evidence of a deep connection between entanglement in quantum gravity and the geometry of spacetime. In this dissertation, we study multiple facets of this connection. We start by quantifying the entanglement of a scalar quantum field theory as a function of the curvature of its background. We then shift our focus to the AdS/CFT duality, and we prove multiple logical relationships between geometric statements in AdS and entropic statements in the CFT. Many of these proofs work in the presence of quantum corrections, and we prove under which geometric conditions entanglement wedge nesting continues to imply the quantum null energy condition (QNEC) when the CFT is on an arbitrary curved background. We also demonstrate that the non-gravitational limit of the quantum focusing conjecture implies the QNEC, given the same geometric conditions. Next, we prove the connection between the boundary of the future of a surface and the null geodesics originating orthogonally from that surface. This theorem is important for proving that the area of holographic screens increases monotonically. Finally, we derive the holographic prescription for computing Renyi entropies of a CFT with the formalism of quantum error-correction. In the process, we provide evidence that the quantum gravity degrees of freedom related to the AdS geometry are maximally-mixed.
Subject Added Entry-Topical Term  
Theoretical physics
Subject Added Entry-Topical Term  
Quantum physics
Added Entry-Corporate Name  
University of California, Berkeley Physics
Host Item Entry  
Dissertations Abstracts International. 81-06B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:566061

MARC

 008200131s2019                                          c    eng  d
■001000015491732
■00520200217181403
■020    ▼a9781392369944
■035    ▼a(MiAaPQ)AAI13896589
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a530
■1001  ▼aAkers,  Christopher.
■24510▼aEntanglement  and  Geometry
■260    ▼a[Sl]▼bUniversity  of  California,  Berkeley▼c2019
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2019
■300    ▼a150  p
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  81-06,  Section:  B.
■500    ▼aAdvisor:  Bousso,  Raphael.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  Berkeley,  2019.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■520    ▼aThere  is  now  strong  evidence  of  a  deep  connection  between  entanglement  in  quantum  gravity  and  the  geometry  of  spacetime.  In  this  dissertation,  we  study  multiple  facets  of  this  connection.  We  start  by  quantifying  the  entanglement  of  a  scalar  quantum  field  theory  as  a  function  of  the  curvature  of  its  background.  We  then  shift  our  focus  to  the  AdS/CFT  duality,  and  we  prove  multiple  logical  relationships  between  geometric  statements  in  AdS  and  entropic  statements  in  the  CFT.  Many  of  these  proofs  work  in  the  presence  of  quantum  corrections,  and  we  prove  under  which  geometric  conditions  entanglement  wedge  nesting  continues  to  imply  the  quantum  null  energy  condition  (QNEC)  when  the  CFT  is  on  an  arbitrary  curved  background.  We  also  demonstrate  that  the  non-gravitational  limit  of  the  quantum  focusing  conjecture  implies  the  QNEC,  given  the  same  geometric  conditions.  Next,  we  prove  the  connection  between  the  boundary  of  the  future  of  a  surface  and  the  null  geodesics  originating  orthogonally  from  that  surface.  This  theorem  is  important  for  proving  that  the  area  of  holographic  screens  increases  monotonically.  Finally,  we  derive  the  holographic  prescription  for  computing  Renyi  entropies  of  a  CFT  with  the  formalism  of  quantum  error-correction.  In  the  process,  we  provide  evidence  that  the  quantum  gravity  degrees  of  freedom  related  to  the  AdS  geometry  are  maximally-mixed.
■590    ▼aSchool  code:  0028.
■650  4▼aTheoretical  physics
■650  4▼aQuantum  physics
■690    ▼a0753
■690    ▼a0599
■71020▼aUniversity  of  California,  Berkeley▼bPhysics.
■7730  ▼tDissertations  Abstracts  International▼g81-06B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0028
■791    ▼aPh.D.
■792    ▼a2019
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T15491732▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202002▼f2020

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    高级搜索信息

    • 预订
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 我的文件夹
    材料
    注册编号 呼叫号码. 收藏 状态 借信息.
    TQ0006086 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *保留在借用的书可用。预订,请点击预订按钮

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치