본문

서브메뉴

Analyzing Sampling in Stochastic Optimization: Importance Sampling and Statistical Inference
Analyzing Sampling in Stochastic Optimization: Importance Sampling and Statistical Inference

상세정보

자료유형  
 학위논문
Control Number  
0015492143
International Standard Book Number  
9781088306994
Dewey Decimal Classification Number  
512
Main Entry-Personal Name  
Yu, Yang.
Publication, Distribution, etc. (Imprint  
[Sl] : The University of North Carolina at Chapel Hill, 2019
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2019
Physical Description  
113 p
General Note  
Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
General Note  
Advisor: Lu, Shu
Dissertation Note  
Thesis (Ph.D.)--The University of North Carolina at Chapel Hill, 2019.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Restrictions on Access Note  
This item must not be added to any third party search indexes.
Summary, Etc.  
요약The objective function of a stochastic optimization problem usually involves an expectation of random variables which cannot be calculated directly. When this is the case, a common approach is to replace the expectation with a sample average approximation. However, sometimes there are difficulties in using such a sample average approximation to achieve certain goals. This dissertation studies two specific problems. In the first problem, we aim to solve a minimization problem whose objective function is the probability of an undesired rare event. To accurately estimate this rare event probability by Monte Carlo simulation, an extremely large sample is required, which is expensive to implement. An importance sampling scheme based on the theory of large deviations is developed to efficiently reduce the sample size and thus reduce the computational cost. The convergence of a sequence of approximation problems is also studied, through which a good initial point to the minimization problem can be found. We also study the buffered probability of exceedance as an alternative risk measure instead of the ordinary probability. Under conditions, the analogous minimization problem can be formulated into a convex problem.In the second problem, we focus on a two-stage stochastic linear programming problem, where the objective function has to be approximated by a sample average function with a random sample of the corresponding random variables. However, such a sample average function is not smooth enough to estimate the Hessian of the objective function which is needed to calculate the confidence intervals for the true solution. To overcome this difficulty, the sample average function is smoothed by its convolution with a kernel function. Methods to compute confidence intervals for the true solution are then developed based on inference methods for stochastic variational inequalities.
Subject Added Entry-Topical Term  
Operations research
Subject Added Entry-Topical Term  
Monte Carlo simulation
Subject Added Entry-Topical Term  
Linear programming
Subject Added Entry-Topical Term  
Statistical inference
Subject Added Entry-Topical Term  
Stochastic models
Subject Added Entry-Topical Term  
Optimization
Added Entry-Corporate Name  
The University of North Carolina at Chapel Hill Statistics and Operations Research
Host Item Entry  
Dissertations Abstracts International. 81-04B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:565608

MARC

 008200131s2019                                          c    eng  d
■001000015492143
■00520200217181546
■020    ▼a9781088306994
■035    ▼a(MiAaPQ)AAI13900068
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a512
■1001  ▼aYu,  Yang.
■24510▼aAnalyzing  Sampling  in  Stochastic  Optimization:  Importance  Sampling  and  Statistical  Inference
■260    ▼a[Sl]▼bThe  University  of  North  Carolina  at  Chapel  Hill▼c2019
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2019
■300    ▼a113  p
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  81-04,  Section:  B.
■500    ▼aAdvisor:  Lu,  Shu
■5021  ▼aThesis  (Ph.D.)--The  University  of  North  Carolina  at  Chapel  Hill,  2019.
■506    ▼aThis  item  must  not  be  sold  to  any  third  party  vendors.
■506    ▼aThis  item  must  not  be  added  to  any  third  party  search  indexes.
■520    ▼aThe  objective  function  of  a  stochastic  optimization  problem  usually  involves  an  expectation  of  random  variables  which  cannot  be  calculated  directly.  When  this  is  the  case,  a  common  approach  is  to  replace  the  expectation  with  a  sample  average  approximation.  However,  sometimes  there  are  difficulties  in  using  such  a  sample  average  approximation  to  achieve  certain  goals.  This  dissertation  studies  two  specific  problems.  In  the  first  problem,  we  aim  to  solve  a  minimization  problem  whose  objective  function  is  the  probability  of  an  undesired  rare  event.  To  accurately  estimate  this  rare  event  probability  by  Monte  Carlo  simulation,  an  extremely  large  sample  is  required,  which  is  expensive  to  implement.  An  importance  sampling  scheme  based  on  the  theory  of  large  deviations  is  developed  to  efficiently  reduce  the  sample  size  and  thus  reduce  the  computational  cost.  The  convergence  of  a  sequence  of  approximation  problems  is  also  studied,  through  which  a  good  initial  point  to  the  minimization  problem  can  be  found.  We  also  study  the  buffered  probability  of  exceedance  as  an  alternative  risk  measure  instead  of  the  ordinary  probability.  Under  conditions,  the  analogous  minimization  problem  can  be  formulated  into  a  convex  problem.In  the  second  problem,  we  focus  on  a  two-stage  stochastic  linear  programming  problem,  where  the  objective  function  has  to  be  approximated  by  a  sample  average  function  with  a  random  sample  of  the  corresponding  random  variables.  However,  such  a  sample  average  function  is  not  smooth  enough  to  estimate  the  Hessian  of  the  objective  function  which  is  needed  to  calculate  the  confidence  intervals  for  the  true  solution.  To  overcome  this  difficulty,  the  sample  average  function  is  smoothed  by  its  convolution  with  a  kernel  function.  Methods  to  compute  confidence  intervals  for  the  true  solution  are  then  developed  based  on  inference  methods  for  stochastic  variational  inequalities.
■590    ▼aSchool  code:  0153.
■650  4▼aOperations  research
■650  4▼aMonte  Carlo  simulation
■650  4▼aLinear  programming
■650  4▼aStatistical  inference
■650  4▼aStochastic  models
■650  4▼aOptimization
■690    ▼a0796
■71020▼aThe  University  of  North  Carolina  at  Chapel  Hill▼bStatistics  and  Operations  Research.
■7730  ▼tDissertations  Abstracts  International▼g81-04B.
■773    ▼tDissertation  Abstract  International
■790    ▼a0153
■791    ▼aPh.D.
■792    ▼a2019
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T15492143▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.
■980    ▼a202002▼f2020

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    최근 3년간 통계입니다.

    פרט מידע

    • הזמנה
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • התיקיה שלי
    גשמי
    Reg No. Call No. מיקום מצב להשאיל מידע
    TQ0005636 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * הזמנות זמינים בספר ההשאלה. כדי להזמין, נא לחץ על כפתור ההזמנה

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치