서브메뉴
검색
Local-Global Principles and Diophantine Sets in Rings of Number-Theoretic Interest
Local-Global Principles and Diophantine Sets in Rings of Number-Theoretic Interest
상세정보
- 자료유형
- 학위논문
- Control Number
- 0015000698
- International Standard Book Number
- 9780438135444
- Dewey Decimal Classification Number
- 510
- Main Entry-Personal Name
- Morrison, Travis.
- Publication, Distribution, etc. (Imprint
- [Sl] : The Pennsylvania State University, 2018
- Publication, Distribution, etc. (Imprint
- Ann Arbor : ProQuest Dissertations & Theses, 2018
- Physical Description
- 81 p
- General Note
- Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
- Dissertation Note
- Thesis (Ph.D.)--The Pennsylvania State University, 2018.
- Summary, Etc.
- 요약Hilbert's tenth problem over a number field K, a major open problem, concerns the decidability of the diophantine subsets of K. In this dissertation, we give diophantine definitions of several subsets of global fields which are of arithmetic int
- Subject Added Entry-Topical Term
- Mathematics
- Added Entry-Corporate Name
- The Pennsylvania State University Mathematics
- Host Item Entry
- Dissertation Abstracts International. 79-12B(E).
- Host Item Entry
- Dissertation Abstract International
- Electronic Location and Access
- 로그인을 한후 보실 수 있는 자료입니다.
- Control Number
- joongbu:557499
MARC
008181129s2018 c eng d■001000015000698
■00520190102172908
■020 ▼a9780438135444
■035 ▼a(MiAaPQ)AAI10903719
■040 ▼aMiAaPQ▼cMiAaPQ
■0820 ▼a510
■1001 ▼aMorrison, Travis.
■24510▼aLocal-Global Principles and Diophantine Sets in Rings of Number-Theoretic Interest
■260 ▼a[Sl]▼bThe Pennsylvania State University▼c2018
■260 1▼aAnn Arbor▼bProQuest Dissertations & Theses▼c2018
■300 ▼a81 p
■500 ▼aSource: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
■5021 ▼aThesis (Ph.D.)--The Pennsylvania State University, 2018.
■520 ▼aHilbert's tenth problem over a number field K, a major open problem, concerns the decidability of the diophantine subsets of K. In this dissertation, we give diophantine definitions of several subsets of global fields which are of arithmetic int
■590 ▼aSchool code: 0176.
■650 4▼aMathematics
■690 ▼a0405
■71020▼aThe Pennsylvania State University▼bMathematics.
■7730 ▼tDissertation Abstracts International▼g79-12B(E).
■773 ▼tDissertation Abstract International
■790 ▼a0176
■791 ▼aPh.D.
■792 ▼a2018
■793 ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T15000698▼nKERIS
■980 ▼a201812▼f2019