서브메뉴
검색
Bayesian non- and semi-parametric methods and applications
Bayesian non- and semi-parametric methods and applications
- 자료유형
- 단행본
- Control Number
- n875686973
- International Standard Book Number
- 9781400850303 (electronic bk.)
- International Standard Book Number
- 1400850304 (electronic bk.)
- International Standard Book Number
- 9780691145327
- International Standard Book Number
- 0691145326
- International Standard Book Number
- 9781306548021
- International Standard Book Number
- 1306548020
- Library of Congress Call Number
- HB139-.R64 2014eb
- Dewey Decimal Classification Number
- 330.01/519542-23
- Main Entry-Personal Name
- Rossi, Peter E.((Peter Eric)) , 1955-
- Publication, Distribution, etc. (Imprint
- Princeton : Princeton University Press, [2014]
- Physical Description
- 1 online resource (xiii, 202 pages) : illustrations.
- Series Statement
- The econometric and tinbergen institutes lectures
- Bibliography, Etc. Note
- Includes bibliographical references (pages 195-200) and index.
- Summary, Etc.
- 요약This book reviews and develops Bayesian non-parametric and semi-parametric methods for applications in microeconometrics and quantitative marketing. Most econometric models used in microeconomics and marketing applications involve arbitrary distributional assumptions. As more data becomes available, a natural desire to provide methods that relax these assumptions arises. Peter Rossi advocates a Bayesian approach in which specific distributional assumptions are replaced with more flexible distributions based on mixtures of normals. The Bayesian approach can use either a large but fixed number.
- Formatted Contents Note
- 완전내용1.1. Finite Mixture of Normals Likelihood Function -- 1.2. Maximum Likelihood Estimation -- 1.3. Bayesian Inference for the Mixture of Normals Model -- 1.4. Priors and the Bayesian Model -- 1.5. Unconstrained Gibbs Sampler -- 1.6. Label-Switching -- 1.7. Examples -- 1.8. Clustering Observations -- 1.9. Marginalized Samplers -- \
- Formatted Contents Note
- 완전내용2.1. Dirichlet Processes-A Construction -- 2.2. Finite and Infinite Mixture Models -- 2.3. Stick-Breaking Representation -- 2.4. Polya Urn Representation and Associated Gibbs Sampler -- 2.5. Priors on DP Parameters and Hyper-parameters -- 2.6. Gibbs Sampler for DP Models and Density Estimation -- 2.7. Scaling the Data -- 2.8. Density Estimation Examples.
- Formatted Contents Note
- 완전내용3.1. Joint vs. Conditional Density Approaches -- 3.2. Implementing the Joint Approach with Mixtures of Normals -- 3.3. Examples of Non-parametric Regression Using Joint Approach -- 3.4. Discrete Dependent Variables -- 3.5. An Example of Expenditure Function Estimation.
- Formatted Contents Note
- 완전내용4.1. Semi-parametric Regression with DP Priors -- 4.2. Semi-parametric IV Models.
- Formatted Contents Note
- 완전내용5.1. Introduction -- 5.2. Semi-parametric Random Coefficient Logit Models -- 5.3. An Empirical Example of a Semi-parametric Random Coefficient Logit Model.
- Formatted Contents Note
- 완전내용6.1. When Are Non-parametric and Semi-parametric Methods Most Useful? -- 6.2. Semi-parametric or Non-parametric Methods? -- 6.3. Extensions.
- Subject Added Entry-Topical Term
- Econometrics
- Subject Added Entry-Topical Term
- Bayesian statistical decision theory
- Subject Added Entry-Topical Term
- Economics, Mathematical
- Subject Added Entry-Topical Term
- BUSINESS & ECONOMICS Economics General.
- Subject Added Entry-Topical Term
- BUSINESS & ECONOMICS Reference.
- Subject Added Entry-Topical Term
- Bayesian statistical decision theory.
- Subject Added Entry-Topical Term
- Econometrics.
- Subject Added Entry-Topical Term
- Economics, Mathematical.
- Additional Physical Form Entry
- Print version / Rossi, Peter E. (Peter Eric), 1955-Bayesian non- and semi-parametric methods and applications. 9780691145327. (DLC) 2013038609. (OCoLC)859168674
- Series Added Entry-Uniform Title
- Econometric and Tinbergen Institutes lectures.
- Electronic Location and Access
- 로그인을 한후 보실 수 있는 자료입니다.
- Control Number
- joongbu:504656