본문

서브메뉴

Neural Network Computing for the Electric Power Industry- [electronic resource] : Proceedings of the 1992 Inns Summer Workshop
Neural Network Computing for the Electric Power Industry- [electronic resource] : Proceedings of the 1992 Inns Summer Workshop

상세정보

자료유형  
 단행본
Control Number  
n852757630
International Standard Book Number  
9781134781904 (electronic bk.)
International Standard Book Number  
1134781903 (electronic bk.)
Library of Congress Call Number  
QA76.87
Dewey Decimal Classification Number  
621.31/0285/63-20
Main Entry-Personal Name  
Sobajic, Dejan J.
Publication, Distribution, etc. (Imprint  
Hoboken : Taylor and Francis, 2013
Physical Description  
1 online resource (237 pages).
Series Statement  
INNS Series of Texts, Monographs, and Proceedings Series
Formatted Contents Note  
완전내용Cover; NEURAL NETWORK COMPUTING FOR THE ELECTRIC POWER INDUSTRY: PROCEEDINGS OF THE 1992 INNS SUMMER WORKSHOP; Copyright; PROORAM COMMITTEE; TABLE OF CONTENTS; FOREWORD; A . Perspectives; LEARNING AND GENERALIZATION CHARACTERISTICS OF THE RANDOM VECTOR FUNCTIONAL-LINK NET; Artificial Neural Networks and Expert Systems in the Power System Operation Environment; A Utility Perspective on Neural Networks, Fuzzy Logic, and Artificial Intelligence; B . Neural Network Methodologies; Backpropagation and its Applications.
Formatted Contents Note  
완전내용Using Flow Graph Interreciprocity to Relate Recurrent-Backpropagation and Backpropagation-Through-TimeNeural Network Based Inferential Sensing and Instrumentation; OPTIMIZING NEURAL NETWORKS WITH GENETIC ALGORITHMS; C. Nuclear Power Plants; POTENTIAL USE OF NEURAL NETWORKS IN NUCLEAR POWER PLANTS; Sensor Validation in Power Plants Using Neural Networks; MEASURING FUZZY VARIABLES IN A NUCLEAR REACTOR USING ARTIFICIAL NEURAL NETWORKS; Application of a Real Time Artificial Neural Network for Classifying Nuclear Power Plant Transient Events; Control Rod Wear Recognition Using Neural Nets.
Formatted Contents Note  
완전내용SAMSON Severe Accident Management System Online NetworkD . Power System Operation; Comparison of Dynamic Load Models Extrapolation Using Neural Networks and Traditional Methods; On Neural Network Voltage Assessment; NEURAL-NET SYNTHESIS OF TANGENT HYPERSURFACES FOR TRANSIENT SECURITY ASSESSMENT OF ELECTRIC POWER SYSTEMS; POWER SYSTEM STATIC SECURITY ASSESSMENT USING THE KOHONEN NEURAL NETWORK CLASSIFIER; Voltage Stability Monitoring with Artificial Neural Networks; INTELLIGENT LOAD SHEDDING; CONSIDERATION IN INTELLIGENT ALARM PROCESSING; E. Modeling and Prediction.
Formatted Contents Note  
완전내용PREDICTIVE SECURITY MONITORING WITH NEURAL NETWORKSEmpirical Modeling in Power Engineering Using the Recurrent Multilayer Perceptron Network; Modeling and Identification with Neural Networks; Autoregressive Neural Network Prediction: Learning Chaotic Time Series and Attractors.; F. Control; Neural Control Systems; POTENTIAL USES OF INTELLIGENT AND ADAPTIVE CONTROLS FOR ELECTRIC POWER SYSTEM OPERATIONS IN THE YEAR 2000 AND BEYOND; Load-Frequency Control Using Neural Networks.; REINFORCEMENT LEARNING FOR ADAPTIVE CONTROL; G . Load Forecasting.
Formatted Contents Note  
완전내용APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO LOAD FORECASTINGSHORT-TERM ELECTRIC LOAD FORECASTING USING NEURAL NETWORKS; LOAD FORECASTING BY HIERARCHICAL NEURAL NETWORKS THAT INCORPORATE KNOWN LOAD CHARACTERISTICS; H. Scheduling and Optimization; A Solution Method for Maintenance Scheduling of Thermal Units by Artificial Neural Networks; GENERATION DISPATCH ALGORITHM COORDINATING ECONOMY AND STABILTY BY USING ARTIFICIAL NEURAL NETWORK; I. Fault Diagnosis; IMPULSE TEST FAULT DIAGNOSIS ON POWER TRANSFORMERS USING KOHONEN'S SELF-ORGANIZING NEURAL NETWORK.
General Note  
A case study of neural network application: power equipment failure diagnosis.
Summary, Etc.  
요약Power system computing with neural networks is one of the fastest growing fields in the history of power system engineering. Since 1988, a considerable amount of work has been done in investigating computing capabilities of neural networks and understanding their relevance to providing efficient solutions for outstanding complex problems of the electric power industry. A principal objective of a power utility is to provide electric energy to its customers in a secure, reliable and economic manner. Toward this aim, utility personnel are engaged in a variety of activities in areas of supervisory.
Subject Added Entry-Topical Term  
Neural networks (Computer science) Congresses
Subject Added Entry-Topical Term  
Electric power systems Data processing Congresses
Subject Added Entry-Topical Term  
TECHNOLOGY & ENGINEERING Mechanical.
Subject Added Entry-Topical Term  
Electric power systems Data processing.
Subject Added Entry-Topical Term  
Neural networks (Computer science)
Additional Physical Form Entry  
Print versionSobajic, Dejan J. Neural Network Computing for the Electric Power Industry : Proceedings of the 1992 Inns Summer Workshop. Hoboken : Taylor and Francis, ©2013 9780805814675
Series Added Entry-Uniform Title  
INNS Series of Texts, Monographs, and Proceedings Series.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:442155

MARC

 008130713s2013        xx            o          000  0  eng  d
■001ocn852757630
■00520150319110048.0
■006m          o    d                
■007cr  |n|||||||||
■040    ▼aEBLCP▼beng▼epn▼cEBLCP▼dOCLCQ▼dDEBSZ▼dUKDOC▼dN$T▼dOCLCQ▼dOCLCF
■020    ▼a9781134781904  (electronic  bk.)
■020    ▼a1134781903  (electronic  bk.)
■035    ▼a(OCoLC)852757630
■050  4▼aQA76.87
■072  7▼aTEC▼x009070▼2bisacsh
■08204▼a621.31/0285/63▼220
■1001  ▼aSobajic,  Dejan  J.
■24510▼aNeural  Network  Computing  for  the  Electric  Power  Industry▼h[electronic  resource]  ▼bProceedings  of  the  1992  Inns  Summer  Workshop
■260    ▼aHoboken▼bTaylor  and  Francis▼c2013
■300    ▼a1  online  resource  (237  pages).
■336    ▼atext▼btxt▼2rdacontent
■337    ▼acomputer▼bc▼2rdamedia
■338    ▼aonline  resource▼bcr▼2rdacarrier
■4901  ▼aINNS  Series  of  Texts,  Monographs,  and  Proceedings  Series
■5050  ▼aCover;  NEURAL  NETWORK  COMPUTING  FOR  THE  ELECTRIC  POWER  INDUSTRY:  PROCEEDINGS  OF  THE  1992  INNS  SUMMER  WORKSHOP;  Copyright;  PROORAM  COMMITTEE;  TABLE  OF  CONTENTS;  FOREWORD;  A  .  Perspectives;  LEARNING  AND  GENERALIZATION  CHARACTERISTICS  OF  THE  RANDOM  VECTOR  FUNCTIONAL-LINK  NET;  Artificial  Neural  Networks  and  Expert  Systems  in  the  Power  System  Operation  Environment;  A  Utility  Perspective  on  Neural  Networks,  Fuzzy  Logic,  and  Artificial  Intelligence;  B  .  Neural  Network  Methodologies;  Backpropagation  and  its  Applications.
■5058  ▼aUsing  Flow  Graph  Interreciprocity  to  Relate  Recurrent-Backpropagation  and  Backpropagation-Through-TimeNeural  Network  Based  Inferential  Sensing  and  Instrumentation;  OPTIMIZING  NEURAL  NETWORKS  WITH  GENETIC  ALGORITHMS;  C.  Nuclear  Power  Plants;  POTENTIAL  USE  OF  NEURAL  NETWORKS  IN  NUCLEAR  POWER  PLANTS;  Sensor  Validation  in  Power  Plants  Using  Neural  Networks;  MEASURING  FUZZY  VARIABLES  IN  A  NUCLEAR  REACTOR  USING  ARTIFICIAL  NEURAL  NETWORKS;  Application  of  a  Real  Time  Artificial  Neural  Network  for  Classifying  Nuclear  Power  Plant  Transient  Events;  Control  Rod  Wear  Recognition  Using  Neural  Nets.
■5058  ▼aSAMSON  Severe  Accident  Management  System  Online  NetworkD  .  Power  System  Operation;  Comparison  of  Dynamic  Load  Models  Extrapolation  Using  Neural  Networks  and  Traditional  Methods;  On  Neural  Network  Voltage  Assessment;  NEURAL-NET  SYNTHESIS  OF  TANGENT  HYPERSURFACES  FOR  TRANSIENT  SECURITY  ASSESSMENT  OF  ELECTRIC  POWER  SYSTEMS;  POWER  SYSTEM  STATIC  SECURITY  ASSESSMENT  USING  THE  KOHONEN  NEURAL  NETWORK  CLASSIFIER;  Voltage  Stability  Monitoring  with  Artificial  Neural  Networks;  INTELLIGENT  LOAD  SHEDDING;  CONSIDERATION  IN  INTELLIGENT  ALARM  PROCESSING;  E.  Modeling  and  Prediction.
■5058  ▼aPREDICTIVE  SECURITY  MONITORING  WITH  NEURAL  NETWORKSEmpirical  Modeling  in  Power  Engineering  Using  the  Recurrent  Multilayer  Perceptron  Network;  Modeling  and  Identification  with  Neural  Networks;  Autoregressive  Neural  Network  Prediction:  Learning  Chaotic  Time  Series  and  Attractors.;  F.  Control;  Neural  Control  Systems;  POTENTIAL  USES  OF  INTELLIGENT  AND  ADAPTIVE  CONTROLS  FOR  ELECTRIC  POWER  SYSTEM  OPERATIONS  IN  THE  YEAR  2000  AND  BEYOND;  Load-Frequency  Control  Using  Neural  Networks.;  REINFORCEMENT  LEARNING  FOR  ADAPTIVE  CONTROL;  G  .  Load  Forecasting.
■5058  ▼aAPPLICATION  OF  ARTIFICIAL  NEURAL  NETWORKS  TO  LOAD  FORECASTINGSHORT-TERM  ELECTRIC  LOAD  FORECASTING  USING  NEURAL  NETWORKS;  LOAD  FORECASTING  BY  HIERARCHICAL  NEURAL  NETWORKS  THAT  INCORPORATE  KNOWN  LOAD  CHARACTERISTICS;  H.  Scheduling  and  Optimization;  A  Solution  Method  for  Maintenance  Scheduling  of  Thermal  Units  by  Artificial  Neural  Networks;  GENERATION  DISPATCH  ALGORITHM  COORDINATING  ECONOMY  AND  STABILTY  BY  USING  ARTIFICIAL  NEURAL  NETWORK;  I.  Fault  Diagnosis;  IMPULSE  TEST  FAULT  DIAGNOSIS  ON  POWER  TRANSFORMERS  USING  KOHONEN'S  SELF-ORGANIZING  NEURAL  NETWORK.
■500    ▼aA  case  study  of  neural  network  application:  power  equipment  failure  diagnosis.
■520    ▼aPower  system  computing  with  neural  networks  is  one  of  the  fastest  growing  fields  in  the  history  of  power  system  engineering.  Since  1988,  a  considerable  amount  of  work  has  been  done  in  investigating  computing  capabilities  of  neural  networks  and  understanding  their  relevance  to  providing  efficient  solutions  for  outstanding  complex  problems  of  the  electric  power  industry.  A  principal  objective  of  a  power  utility  is  to  provide  electric  energy  to  its  customers  in  a  secure,  reliable  and  economic  manner.  Toward  this  aim,  utility  personnel  are  engaged  in  a  variety  of  activities  in  areas  of  supervisory.
■5880  ▼aPrint  version  record.
■650  0▼aNeural  networks  (Computer  science)▼vCongresses
■650  0▼aElectric  power  systems▼xData  processing▼vCongresses
■650  7▼aTECHNOLOGY  &  ENGINEERING▼xMechanical.▼2bisacsh
■655  4▼aElectronic  books.
■655  7▼aConference  proceedings.▼2fast▼0(OCoLC)fst01423772
■650  7▼aElectric  power  systems▼xData  processing.▼2fast▼0(OCoLC)fst00905545
■650  7▼aNeural  networks  (Computer  science)▼2fast▼0(OCoLC)fst01036260
■77608▼iPrint  version▼aSobajic,  Dejan  J.▼tNeural  Network  Computing  for  the  Electric  Power  Industry  :  Proceedings  of  the  1992  Inns  Summer  Workshop.▼dHoboken  :  Taylor  and  Francis,  ©2013▼z9780805814675
■830  0▼aINNS  Series  of  Texts,  Monographs,  and  Proceedings  Series.
■85640▼3EBSCOhost▼uhttp://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=602234
■938    ▼a123Library.org▼b123L▼n102777
■938    ▼aEBL  -  Ebook  Library▼bEBLB▼nEBL1222650
■938    ▼aEBSCOhost▼bEBSC▼n602234

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    EW0014794 EB   원문자료 대출가능 대출가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치