본문

서브메뉴

Marketing analytics : a practical guide to real marketing science
Marketing analytics : a practical guide to real marketing science

상세정보

자료유형  
 단행본
Control Number  
n910554172
International Standard Book Number  
9780749474188 electronic bk.
International Standard Book Number  
0749474181 electronic bk.
International Standard Book Number  
9780749474171
International Standard Book Number  
0749474173
Library of Congress Call Number  
HF5415.2
Dewey Decimal Classification Number  
658.8/3-23
Main Entry-Personal Name  
Grigsby, Mike
Physical Description  
1 online resource.
Series Statement  
Marketing science series
Bibliography, Etc. Note  
Includes bibliographical references and index.
Summary, Etc.  
요약"Mike Grigsby provides business analysts and marketers with the marketing science understanding and techniques they need to solve real-world marketing challenges, such as pulling a targeted list, segmenting data, testing campaign effectiveness, and forecasting demand.Assuming no prior knowledge, Marketing Analytics introduces concepts relating to statistics, marketing strategy, and consumer behavior and then works through a series of problems by providing various data modeling options as solutions. By using this format of presenting a problem and multiple ways to solve it, this book both makes marketing science accessible to beginners and aids the more experienced practitioner in understanding the more complex aspects of data analytics to refine their skills and compete more effectively in the workplace"--해제Provided by publisher.
Summary, Etc.  
요약"Marketing Analytics arms business analysts and marketers with the marketing science understanding and techniques they need to solve real-world marketing problems, from pulling a targeted list and segmenting data to testing campaign effectiveness and forecasting demand. Assuming no prior knowledge, this book outlines everything practitioners need to 'do' marketing science and demonstrate value to their organization. It introduces concepts relating to statistics, marketing strategy and consumer behaviour and then works through a series of marketing problems in a straightforward, jargon-free way. It demonstrates solutions for various data modelling scenarios and includes full workings and critical analyses to reinforce the key concepts. By starting with the marketing problem and then sharing a series of data modelling options on how to solve it, Marketing Analytics both makes marketing science accessible for beginners and aids the more seasoned practitioner in getting to grips with the trickier technical aspects of data analytics to refine their marketing skills and toolkit and compete more effectively in the marketplace. About the series: The Marketing Science series makes difficult topics accessible to marketing students and practitioners by grounding them in business reality. Each book is written by an expert in the field and includes case studies and illustrations so marketers can gain confidence in applying the tools and techniques and commission external research"--해제Provided by publisher.
Formatted Contents Note  
완전내용Machine generated contents note: Foreword -- PrefaceIntroduction Part One: Overview01 A (little) statistical review -- Measures of central tendency -- Measures of dispersion -- The normal distribution -- Relations among two variables: covariance and correlation -- Probability and the sampling distribution -- Conclusion -- Checklist: You'll be the smartest person in the room if you...02 Brief principles of consumer behaviour and marketing strategy -- Introduction -- Consumer behaviour as the basis for marketing strategy -- Overview of consumer behaviour -- Overview of marketing strategy -- Conclusion -- Checklist: You'll be the smartest person in the room if you...Part Two Dependent variable techniques 03 Modelling dependent variable techniques (with one equation): what are the things that drive demand? -- Introduction -- Dependent equation type vs inter-relationship type statistics -- Deterministic vs probabilistic equations -- Business case -- Results applied to business case -- Modelling elasticity -- Technical notes -- Highlight: Segmentation and elasticity modelling can maximize revenue in a retail/clinic chain: field test results -- Abstract -- The problem and some background -- Description of the data set -- First: segmentation -- Then: elasticity modelling -- Last: test vs control -- Discussion -- Conclusion -- Checklist: You'll be the smartest person in the room if you...04 Who is most likely to buy and how do I target? -- Introduction -- Conceptual notes -- Business case -- Results applied to the model -- Lift charts -- Using the model -- collinearity overview -- Variable diagnostics -- Highlight: Using logistic regression for market basket analysis -- Abstract -- What is a market basket? -- Logistic regression -- How to estimate/predict the market basket -- Conclusion -- Checklist: You'll be the smartest person in the room if you...05 When are my customers most likely to buy? -- Introduction -- Conceptual overview of survival analysis -- Business case -- More about survival analysis -- Model output and interpretation -- Conclusion -- Highlight: Lifetime value: how predictive analysis is superior to descriptive analysis -- Abstract -- Descriptive analysis -- Predictive analysis -- An example -- Checklist: You'll be the smartest person in the room if you...06 Modelling-dependent variable techniques (with more than one equation) -- Introduction -- What are simultaneous equations? -- Why go to the trouble to use simultaneous equations? -- Desirable properties of estimators -- Business case -- Checklist: You'll be the smartest person in the room if you...Part Three Inter-relationship techniques 07 Modelling inter-relationship techniques: what does my (customer) market look like? -- Introduction -- Introduction to segmentation -- What is segmentation? What is a segment? -- Why segment? Strategic uses of segmentation -- The four Ps of strategic marketing -- Criteria for actionable segmentation -- A priori or not? -- Conceptual process -- Checklist: You'll be the smartest person in the room if you...08 Segmentation tools and techniques -- Overview -- Metrics of successful segmentation -- General analytic techniques -- Business case -- Analytics -- Comments/details on individual segments -- K-means compared to LCA -- Highlight: Why Go Beyond RFM? -- Abstract -- What is RFM? -- What is behavioural segmentation? -- What does behavioural segmentation provide that RFM does not? -- Conclusion -- Sidebar: Segmentation techniques -- Checklist: You'll be the smartest person in the room if you...Part Four Other -- 09 Marketing Research -- Introduction -- How is survey data different than database data? -- Missing value imputation -- Combating respondent fatigue -- A far too brief account of conjoint analysis -- Structural equation modelling (SEM) -- Checklist: You'll be the smartest person in the room if you...10 Statistical testing: how do I know what works? -- Everyone wants to test -- Sample size equation: use the lift measure -- A/B testing and full factorial differences -- Business case -- Checklist: You'll be the smartest person in the room if you...Part Five Capstone 11 Capstone: focusing on digital analytics -- Introduction -- Modelling engagement -- Business case -- Model conception -- How do I model multiple channels? -- ConclusionPart Six Conclusion 12 The Finale: What should you take away from this? Any other stories/soap box rants? -- What things have I learned that I'd like to pass on to you? -- What other things should you take away from all this?Glossary -- Bibliography and further reading -- Index .
Subject Added Entry-Topical Term  
Marketing research
Subject Added Entry-Topical Term  
Marketing
Subject Added Entry-Topical Term  
BUSINESS & ECONOMICS / Marketing / Research.
Subject Added Entry-Topical Term  
COMPUTERS / Database Management / Data Mining.
Subject Added Entry-Topical Term  
BUSINESS & ECONOMICS / E-Commerce / Internet Marketing.
Subject Added Entry-Topical Term  
BUSINESS & ECONOMICS / Industrial Management
Subject Added Entry-Topical Term  
BUSINESS & ECONOMICS / Management
Subject Added Entry-Topical Term  
BUSINESS & ECONOMICS / Management Science
Subject Added Entry-Topical Term  
BUSINESS & ECONOMICS / Organizational Behavior
Additional Physical Form Entry  
Print versionGrigsby, Mike. Marketing analytics 9780749474171 (DLC) 2015016002 (OCoLC)907146519
Series Added Entry-Uniform Title  
Marketing science series.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:440708

MARC

 008150602s2015        enk          ob        001  0  eng  d
■001ocn910554172
■00520150622124059.0
■006m          o    d                
■007cr  cnu---unuuu
■040    ▼aN$T▼beng▼erda▼epn▼cN$T▼dCDX▼dIDEBK▼dEBLCP▼dN$T
■020    ▼a9780749474188▼qelectronic  bk.
■020    ▼a0749474181▼qelectronic  bk.
■020    ▼z9780749474171
■020    ▼z0749474173
■035    ▼a(OCoLC)910554172
■050  4▼aHF5415.2
■072  7▼aBUS▼x082000▼2bisacsh
■072  7▼aBUS▼x041000▼2bisacsh
■072  7▼aBUS▼x042000▼2bisacsh
■072  7▼aBUS▼x085000▼2bisacsh
■08204▼a658.8/3▼223
■084    ▼aBUS043060▼aCOM021030▼aBUS090010▼2bisacsh
■1001  ▼aGrigsby,  Mike▼eauthor.
■24510▼aMarketing  analytics  ▼ba  practical  guide  to  real  marketing  science▼dMike  Grigsby
■264  1▼aLondon  :  Philadelphia▼bKogan  Page▼c2015.
■300    ▼a1  online  resource.
■336    ▼atext▼btxt▼2rdacontent
■337    ▼acomputer▼bc▼2rdamedia
■338    ▼aonline  resource▼bcr▼2rdacarrier
■4901  ▼aMarketing  science  series
■504    ▼aIncludes  bibliographical  references  and  index.
■520    ▼a"Mike  Grigsby  provides  business  analysts  and  marketers  with  the  marketing  science  understanding  and  techniques  they  need  to  solve  real-world  marketing  challenges,  such  as  pulling  a  targeted  list,  segmenting  data,  testing  campaign  effectiveness,  and  forecasting  demand.Assuming  no  prior  knowledge,  Marketing  Analytics  introduces  concepts  relating  to  statistics,  marketing  strategy,  and  consumer  behavior  and  then  works  through  a  series  of  problems  by  providing  various  data  modeling  options  as  solutions.  By  using  this  format  of  presenting  a  problem  and  multiple  ways  to  solve  it,  this  book  both  makes  marketing  science  accessible  to  beginners  and  aids  the  more  experienced  practitioner  in  understanding  the  more  complex  aspects  of  data  analytics  to  refine  their  skills  and  compete  more  effectively  in  the  workplace"--▼cProvided  by  publisher.
■520    ▼a"Marketing  Analytics  arms  business  analysts  and  marketers  with  the  marketing  science  understanding  and  techniques  they  need  to  solve  real-world  marketing  problems,  from  pulling  a  targeted  list  and  segmenting  data  to  testing  campaign  effectiveness  and  forecasting  demand.  Assuming  no  prior  knowledge,  this  book  outlines  everything  practitioners  need  to  'do'  marketing  science  and  demonstrate  value  to  their  organization.  It  introduces  concepts  relating  to  statistics,  marketing  strategy  and  consumer  behaviour  and  then  works  through  a  series  of  marketing  problems  in  a  straightforward,  jargon-free  way.  It  demonstrates  solutions  for  various  data  modelling  scenarios  and  includes  full  workings  and  critical  analyses  to  reinforce  the  key  concepts.  By  starting  with  the  marketing  problem  and  then  sharing  a  series  of  data  modelling  options  on  how  to  solve  it,  Marketing  Analytics  both  makes  marketing  science  accessible  for  beginners  and  aids  the  more  seasoned  practitioner  in  getting  to  grips  with  the  trickier  technical  aspects  of  data  analytics  to  refine  their  marketing  skills  and  toolkit  and  compete  more  effectively  in  the  marketplace.  About  the  series:  The  Marketing  Science  series  makes  difficult  topics  accessible  to  marketing  students  and  practitioners  by  grounding  them  in  business  reality.  Each  book  is  written  by  an  expert  in  the  field  and  includes  case  studies  and  illustrations  so  marketers  can  gain  confidence  in  applying  the  tools  and  techniques  and  commission  external  research"--▼cProvided  by  publisher.
■5058  ▼aMachine  generated  contents  note:  Foreword  --  PrefaceIntroduction  Part  One:  Overview01  A  (little)  statistical  review  --  Measures  of  central  tendency  --  Measures  of  dispersion  --  The  normal  distribution  --  Relations  among  two  variables:  covariance  and  correlation  --  Probability  and  the  sampling  distribution  --  Conclusion  --  Checklist:  You'll  be  the  smartest  person  in  the  room  if  you...02  Brief  principles  of  consumer  behaviour  and  marketing  strategy  --  Introduction  --  Consumer  behaviour  as  the  basis  for  marketing  strategy  --  Overview  of  consumer  behaviour  --  Overview  of  marketing  strategy  --  Conclusion  --  Checklist:  You'll  be  the  smartest  person  in  the  room  if  you...Part  Two  Dependent  variable  techniques  03  Modelling  dependent  variable  techniques  (with  one  equation):  what  are  the  things  that  drive  demand?  --  Introduction  --  Dependent  equation  type  vs  inter-relationship  type  statistics  --  Deterministic  vs  probabilistic  equations  --  Business  case  --  Results  applied  to  business  case  --  Modelling  elasticity  --  Technical  notes  --  Highlight:  Segmentation  and  elasticity  modelling  can  maximize  revenue  in  a  retail/clinic  chain:  field  test  results  --  Abstract  --  The  problem  and  some  background  --  Description  of  the  data  set  --  First:  segmentation  --  Then:  elasticity  modelling  --  Last:  test  vs  control  --  Discussion  --  Conclusion  --  Checklist:  You'll  be  the  smartest  person  in  the  room  if  you...04  Who  is  most  likely  to  buy  and  how  do  I  target?  --  Introduction  --  Conceptual  notes  --  Business  case  --  Results  applied  to  the  model  --  Lift  charts  --  Using  the  model  --  collinearity  overview  --  Variable  diagnostics  --  Highlight:  Using  logistic  regression  for  market  basket  analysis  --  Abstract  --  What  is  a  market  basket?  --  Logistic  regression  --  How  to  estimate/predict  the  market  basket  --  Conclusion  --  Checklist:  You'll  be  the  smartest  person  in  the  room  if  you...05  When  are  my  customers  most  likely  to  buy?  --  Introduction  --  Conceptual  overview  of  survival  analysis  --  Business  case  --  More  about  survival  analysis  --  Model  output  and  interpretation  --  Conclusion  --  Highlight:  Lifetime  value:  how  predictive  analysis  is  superior  to  descriptive  analysis  --  Abstract  --  Descriptive  analysis  --  Predictive  analysis  --  An  example  --  Checklist:  You'll  be  the  smartest  person  in  the  room  if  you...06  Modelling-dependent  variable  techniques  (with  more  than  one  equation)  --  Introduction  --  What  are  simultaneous  equations?  --  Why  go  to  the  trouble  to  use  simultaneous  equations?  --  Desirable  properties  of  estimators  --  Business  case  --  Checklist:  You'll  be  the  smartest  person  in  the  room  if  you...Part  Three  Inter-relationship  techniques  07  Modelling  inter-relationship  techniques:  what  does  my  (customer)  market  look  like?  --  Introduction  --  Introduction  to  segmentation  --  What  is  segmentation?  What  is  a  segment?  --  Why  segment?  Strategic  uses  of  segmentation  --  The  four  Ps  of  strategic  marketing  --  Criteria  for  actionable  segmentation  --  A  priori  or  not?  --  Conceptual  process  --  Checklist:  You'll  be  the  smartest  person  in  the  room  if  you...08  Segmentation  tools  and  techniques  --  Overview  --  Metrics  of  successful  segmentation  --  General  analytic  techniques  --  Business  case  --  Analytics  --  Comments/details  on  individual  segments  --  K-means  compared  to  LCA  --  Highlight:  Why  Go  Beyond  RFM?  --  Abstract  --  What  is  RFM?  --  What  is  behavioural  segmentation?  --  What  does  behavioural  segmentation  provide  that  RFM  does  not?  --  Conclusion  --  Sidebar:  Segmentation  techniques  --  Checklist:  You'll  be  the  smartest  person  in  the  room  if  you...Part  Four  Other  --  09  Marketing  Research  --  Introduction  --  How  is  survey  data  different  than  database  data?  --  Missing  value  imputation  --  Combating  respondent  fatigue  --  A  far  too  brief  account  of  conjoint  analysis  --  Structural  equation  modelling  (SEM)  --  Checklist:  You'll  be  the  smartest  person  in  the  room  if  you...10  Statistical  testing:  how  do  I  know  what  works?  --  Everyone  wants  to  test  --  Sample  size  equation:  use  the  lift  measure  --  A/B  testing  and  full  factorial  differences  --  Business  case  --  Checklist:  You'll  be  the  smartest  person  in  the  room  if  you...Part  Five  Capstone  11  Capstone:  focusing  on  digital  analytics  --  Introduction  --  Modelling  engagement  --  Business  case  --  Model  conception  --  How  do  I  model  multiple  channels?  --  ConclusionPart  Six  Conclusion  12  The  Finale:  What  should  you  take  away  from  this?  Any  other  stories/soap  box  rants?  --  What  things  have  I  learned  that  I'd  like  to  pass  on  to  you?  --  What  other  things  should  you  take  away  from  all  this?Glossary  --  Bibliography  and  further  reading  --  Index  .
■5880  ▼aPrint  version  record.
■650  0▼aMarketing  research
■650  0▼aMarketing
■650  7▼aBUSINESS  &  ECONOMICS  /  Marketing  /  Research.▼2bisacsh
■650  7▼aCOMPUTERS  /  Database  Management  /  Data  Mining.▼2bisacsh
■650  7▼aBUSINESS  &  ECONOMICS  /  E-Commerce  /  Internet  Marketing.▼2bisacsh
■650  7▼aBUSINESS  &  ECONOMICS  /  Industrial  Management▼2bisacsh
■650  7▼aBUSINESS  &  ECONOMICS  /  Management▼2bisacsh
■650  7▼aBUSINESS  &  ECONOMICS  /  Management  Science▼2bisacsh
■650  7▼aBUSINESS  &  ECONOMICS  /  Organizational  Behavior▼2bisacsh
■655  4▼aElectronic  books.
■77608▼iPrint  version▼aGrigsby,  Mike.▼tMarketing  analytics▼z9780749474171▼w(DLC)    2015016002▼w(OCoLC)907146519
■830  0▼aMarketing  science  series.
■85640▼3EBSCOhost▼uhttp://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1000089
■938    ▼aEBSCOhost▼bEBSC▼n1000089
■938    ▼aCoutts  Information  Services▼bCOUT▼n30381202
■938    ▼aIngram  Digital  eBook  Collection▼bIDEB▼ncis30381202
■938    ▼aEBL  -  Ebook  Library▼bEBLB▼nEBL2059103

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    EW0013347 EB   원문자료 대출가능 대출가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치