본문

서브메뉴

Introduction to autonomous mobile robots- [electronic resource]
Introduction to autonomous mobile robots- [electronic resource]

상세정보

자료유형  
 단행본
International Standard Book Number  
9780262295321 (electronic bk.)
International Standard Book Number  
0262295326 (electronic bk.)
International Standard Book Number  
9780262015356 (hardcover : alk. paper)
International Standard Book Number  
0262015358 (hardcover : alk. paper)
Library of Congress Call Number  
TJ211.415-.S54 2011eb
Dewey Decimal Classification Number  
629.8932
Main Entry-Personal Name  
Siegwart, Roland.
Edition Statement  
2nd ed. / Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza.
Publication, Distribution, etc. (Imprint  
Cambridge, Mass : MIT Press, c2011
Physical Description  
1 online resource (xvi, 453 p) : ill.
Series Statement  
Intelligent robotics and autonomous agents
Bibliography, Etc. Note  
Includes bibliographical references and index.
Formatted Contents Note  
Machine generated contents note 1. Introduction -- 1.1. Introduction -- 1.2. An Overview of the Book -- 2. Locomotion -- 2.1. Introduction -- 2.1.1. Key issues for locomotion -- 2.2. Legged Mobile Robots -- 2.2.1. Leg configurations and stability -- 2.2.2. Consideration of dynamics -- 2.2.3. Examples of legged robot locomotion -- 2.3. Wheeled Mobile Robots -- 2.3.1. Wheeled locomotion: The design space -- 2.3.2. Wheeled locomotion: Case studies -- 2.4. Aerial Mobile Robots -- 2.4.1. Introduction -- 2.4.2. Aircraft configurations -- 2.4.3. State of the art in autonomous VTOL -- 2.5. Problems -- 3. Mobile Robot Kinematics -- 3.1. Introduction -- 3.2. Kinematic Models and Constraints -- 3.2.1. Representing robot position -- 3.2.2. Forward kinematic models -- 3.2.3. Wheel kinematic constraints -- 3.2.4. Robot kinematic constraints -- 3.2.5. Examples: Robot kinematic models and constraints
Formatted Contents Note  
3.3. Mobile Robot Maneuverability -- 3.3.1. Degree of mobility -- 3.3.2. Degree of steerability -- 3.3.3. Robot maneuverability -- 3.4. Mobile Robot Workspace -- 3.4.1. Degrees of freedom -- 3.4.2. Holonomic robots -- 3.4.3. Path and trajectory considerations -- 3.5. Beyond Basic Kinematics -- 3.6. Motion Control (Kinematic Control) -- 3.6.1. Open loop control (trajectory-following) -- 3.6.2. Feedback control -- 3.7. Problems -- 4. Perception -- 4.1. Sensors for Mobile Robots -- 4.1.1. Sensor classification -- 4.1.2. Characterizing sensor performance -- 4.1.3. Representing uncertainty -- 4.1.4. Wheel/motor sensors -- 4.1.5. Heading sensors -- 4.1.6. Accelerometers -- 4.1.7. Inertial measurement unit (IMU) -- 4.1.8. Ground beacons -- 4.1.9. Active ranging -- 4.1.10. Motion/speed sensors -- 4.1.11. Vision sensors -- 4.2. Fundamentals of Computer Vision -- 4.2.1. Introduction -- 4.2.2. The digital camera -- 4.2.3. Image formation -- 4.2.4. Omnidirectional cameras
Formatted Contents Note  
4.2.5. Structure from stereo -- 4.2.6. Structure from motion -- 4.2.7. Motion and optical flow -- 4.2.8. Color tracking -- 4.3. Fundamentals of Image Processing -- 4.3.1. Image filtering -- 4.3.2. Edge detection -- 4.3.3. Computing image similarity -- 4.4. Feature Extraction -- 4.5. Image Feature Extraction: Interest Point Detectors -- 4.5.1. Introduction -- 4.5.2. Properties of the ideal feature detector -- 4.5.3. Corner detectors -- 4.5.4. Invariance to photometric and geometric changes -- 4.5.5. Blob detectors -- 4.6. Place Recognition -- 4.6.1. Introduction -- 4.6.2. From bag of features to visual words -- 4.6.3. Efficient location recognition by using an inverted file -- 4.6.4. Geometric verification for robust place recognition -- 4.6.5. Applications -- 4.6.6. Other image representations for place recognition -- 4.7. Feature Extraction Based on Range Data (Laser, Ultrasonic) -- 4.7.1. Line fitting -- 4.7.2. Six line-extraction algorithms
Formatted Contents Note  
4.7.3. Range histogram features -- 4.7.4. Extracting other geometric features -- 4.8. Problems -- 5. Mobile Robot Localization -- 5.1. Introduction -- 5.2. The Challenge of Localization: Noise and Aliasing -- 5.2.1. Sensor noise -- 5.2.2. Sensor aliasing -- 5.2.3. Effector noise -- 5.2.4. An error model for odometric position estimation -- 5.3. To Localize or Not to Localize: Localization-Based Navigation Versus Programmed Solutions -- 5.4. Belief Representation -- 5.4.1. Single-hypothesis belief -- 5.4.2. Multiple-hypothesis belief -- 5.5. Map Representation -- 5.5.1. Continuous representations -- 5.5.2. Decomposition strategies -- 5.5.3. State of the art: Current challenges in map representation -- 5.6. Probabilistic Map-Based Localization -- 5.6.1. Introduction -- 5.6.2. The robot localization problem -- 5.6.3. Basic concepts of probability theory -- 5.6.4. Terminology -- 5.6.5. The ingredients of probabilistic map-based localization
Formatted Contents Note  
5.6.6. Classification of localization problems -- 5.6.7. Markov localization -- 5.6.8. Kalman filter localization -- 5.7. Other Examples of Localization Systems -- 5.7.1. Landmark-based navigation -- 5.7.2. Globally unique localization -- 5.7.3. Positioning beacon systems -- 5.7.4. Route-based localization -- 5.8. Autonomous Map Building -- 5.8.1. Introduction -- 5.8.2. SLAM: The simultaneous localization and mapping problem -- 5.8.3. Mathematical definition of SLAM -- 5.8.4. Extended Kalman Filter (EKF) SLAM -- 5.8.5. Visual SLAM with a single camera -- 5.8.6. Discussion on EKF SLAM -- 5.8.7. Graph-based SLAM -- 5.8.8. Particle filter SLAM -- 5.8.9. Open challenges in SLAM -- 5.8.10. Open source SLAM software and other resources -- 5.9. Problems -- 6. Planning and Navigation -- 6.1. Introduction -- 6.2. Competences for Navigation: Planning and Reacting -- 6.3. Path Planning -- 6.3.1. Graph search -- 6.3.2. Potential field path planning
Formatted Contents Note  
6.4. Obstacle avoidance -- 6.4.1. Bug algorithm -- 6.4.2. Vector field histogram -- 6.4.3. The bubble band technique -- 6.4.4. Curvature velocity techniques -- 6.4.5. Dynamic window approaches -- 6.4.6. The Schlegel approach to obstacle avoidance -- 6.4.7. Nearness diagram -- 6.4.8. Gradient method -- 6.4.9. Adding dynamic constraints -- 6.4.10. Other approaches -- 6.4.11. Overview -- 6.5. Navigation Architectures -- 6.5.1. Modularity for code reuse and sharing -- 6.5.2. Control localization -- 6.5.3. Techniques for decomposition -- 6.5.4. Case studies: tiered robot architectures -- 6.6. Problems -- Bibliography -- Books -- Papers -- Referenced Webpages.
Summary, Etc.  
요약Mobile robots range from the Mars Pathfinder mission's teleoperated Sojourner to the cleaning robots in the Paris Metro. This text offers students and other interested readers an introduction to the fundamentals of mobile robotics, spanning the mechanical, motor, sensory, perceptual, and cognitive layers the field comprises. The text focuses on mobility itself, offering an overview of the mechanisms that allow a mobile robot to move through a real world environment to perform its tasks, including locomotion, sensing, localization, and motion planning. It synthesizes material from such fields as kinematics, control theory, signal analysis, computer vision, information theory, artificial intelligence, and probability theory. The book presents the techniques and technology that enable mobility in a series of interacting modules. Each chapter treats a different aspect of mobility, as the book moves from low-level to high-level details. It covers all aspects of mobile robotics, including software and hardware design considerations, related technologies, and algorithmic techniques.] This second edition has been revised and updated throughout, with 130 pages of new material on such topics as locomotion, perception, localization, and planning and navigation. Problem sets have been added at the end of each chapter. Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners.--publisher description.
Subject Added Entry-Topical Term  
Mobile robots
Subject Added Entry-Topical Term  
Autonomous robots
Subject Added Entry-Topical Term  
TECHNOLOGY & ENGINEERING / Automation.
Added Entry-Personal Name  
Nourbakhsh, Illah Reza , 1970-
Added Entry-Personal Name  
Scaramuzza, Davide.
Additional Physical Form Entry  
Print versionSiegwart, Roland. Introduction to autonomous mobile robots. Cambridge, Mass. : MIT Press, c2011 9780262015356 (DLC) 2010028053 (OCoLC)649700153
Series Added Entry-Uniform Title  
Intelligent robotics and autonomous agents.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:422738

MARC

 008140102s2011        maua        ob        001  0  eng  d
■001                                        
■003OCoLC
■00520140127111322
■006m          o    d
■007cr  |||
■010    ▼a2010028053
■019    ▼a827009805
■020    ▼a9780262295321  (electronic  bk.)
■020    ▼a0262295326  (electronic  bk.)
■020    ▼z9780262015356  (hardcover  :  alk.  paper)
■020    ▼z0262015358  (hardcover  :  alk.  paper)
■0291  ▼aAU@▼b000048044651
■0291  ▼aDEBSZ▼b372805728
■035    ▼a(OCoLC)708414202
■040    ▼aWSE▼beng▼cWSE▼dWSE▼dYDXCP▼dWSE▼dE7B▼dIUL▼dOCLCQ▼dFER▼dDEBSZ▼dOCLCQ▼dC6I▼dIEEEE▼dN$T
■050  4▼aTJ211.415▼b.S54  2011eb
■072  7▼aTEC▼x004000▼2bisacsh
■0820  ▼a629.8932
■1001  ▼aSiegwart,  Roland.
■24510▼aIntroduction  to  autonomous  mobile  robots▼h[electronic  resource]
■24630▼aAutonomous  mobile  robots
■250    ▼a2nd  ed.▼bRoland  Siegwart,  Illah  R.  Nourbakhsh,  and  Davide  Scaramuzza.
■260    ▼aCambridge,  Mass▼bMIT  Press▼cc2011
■300    ▼a1  online  resource  (xvi,  453  p)  ▼bill.
■4901  ▼aIntelligent  robotics  and  autonomous  agents
■504    ▼aIncludes  bibliographical  references  and  index.
■50500▼gMachine  generated  contents  note▼g1.▼tIntroduction  --▼g1.1.▼tIntroduction  --▼g1.2.▼tAn  Overview  of  the  Book  --▼g2.▼tLocomotion  --▼g2.1.▼tIntroduction  --▼g2.1.1.▼tKey  issues  for  locomotion  --▼g2.2.▼tLegged  Mobile  Robots  --▼g2.2.1.▼tLeg  configurations  and  stability  --▼g2.2.2.▼tConsideration  of  dynamics  --▼g2.2.3.▼tExamples  of  legged  robot  locomotion  --▼g2.3.▼tWheeled  Mobile  Robots  --▼g2.3.1.▼tWheeled  locomotion:  The  design  space  --▼g2.3.2.▼tWheeled  locomotion:  Case  studies  --▼g2.4.▼tAerial  Mobile  Robots  --▼g2.4.1.▼tIntroduction  --▼g2.4.2.▼tAircraft  configurations  --▼g2.4.3.▼tState  of  the  art  in  autonomous  VTOL  --▼g2.5.▼tProblems  --▼g3.▼tMobile  Robot  Kinematics  --▼g3.1.▼tIntroduction  --▼g3.2.▼tKinematic  Models  and  Constraints  --▼g3.2.1.▼tRepresenting  robot  position  --▼g3.2.2.▼tForward  kinematic  models  --▼g3.2.3.▼tWheel  kinematic  constraints  --▼g3.2.4.▼tRobot  kinematic  constraints  --▼g3.2.5.▼tExamples:  Robot  kinematic  models  and  constraints
■50500▼g3.3.▼tMobile  Robot  Maneuverability  --▼g3.3.1.▼tDegree  of  mobility  --▼g3.3.2.▼tDegree  of  steerability  --▼g3.3.3.▼tRobot  maneuverability  --▼g3.4.▼tMobile  Robot  Workspace  --▼g3.4.1.▼tDegrees  of  freedom  --▼g3.4.2.▼tHolonomic  robots  --▼g3.4.3.▼tPath  and  trajectory  considerations  --▼g3.5.▼tBeyond  Basic  Kinematics  --▼g3.6.▼tMotion  Control  (Kinematic  Control)  --▼g3.6.1.▼tOpen  loop  control  (trajectory-following)  --▼g3.6.2.▼tFeedback  control  --▼g3.7.▼tProblems  --▼g4.▼tPerception  --▼g4.1.▼tSensors  for  Mobile  Robots  --▼g4.1.1.▼tSensor  classification  --▼g4.1.2.▼tCharacterizing  sensor  performance  --▼g4.1.3.▼tRepresenting  uncertainty  --▼g4.1.4.▼tWheel/motor  sensors  --▼g4.1.5.▼tHeading  sensors  --▼g4.1.6.▼tAccelerometers  --▼g4.1.7.▼tInertial  measurement  unit  (IMU)  --▼g4.1.8.▼tGround  beacons  --▼g4.1.9.▼tActive  ranging  --▼g4.1.10.▼tMotion/speed  sensors  --▼g4.1.11.▼tVision  sensors  --▼g4.2.▼tFundamentals  of  Computer  Vision  --▼g4.2.1.▼tIntroduction  --▼g4.2.2.▼tThe  digital  camera  --▼g4.2.3.▼tImage  formation  --▼g4.2.4.▼tOmnidirectional  cameras
■50500▼g4.2.5.▼tStructure  from  stereo  --▼g4.2.6.▼tStructure  from  motion  --▼g4.2.7.▼tMotion  and  optical  flow  --▼g4.2.8.▼tColor  tracking  --▼g4.3.▼tFundamentals  of  Image  Processing  --▼g4.3.1.▼tImage  filtering  --▼g4.3.2.▼tEdge  detection  --▼g4.3.3.▼tComputing  image  similarity  --▼g4.4.▼tFeature  Extraction  --▼g4.5.▼tImage  Feature  Extraction:  Interest  Point  Detectors  --▼g4.5.1.▼tIntroduction  --▼g4.5.2.▼tProperties  of  the  ideal  feature  detector  --▼g4.5.3.▼tCorner  detectors  --▼g4.5.4.▼tInvariance  to  photometric  and  geometric  changes  --▼g4.5.5.▼tBlob  detectors  --▼g4.6.▼tPlace  Recognition  --▼g4.6.1.▼tIntroduction  --▼g4.6.2.▼tFrom  bag  of  features  to  visual  words  --▼g4.6.3.▼tEfficient  location  recognition  by  using  an  inverted  file  --▼g4.6.4.▼tGeometric  verification  for  robust  place  recognition  --▼g4.6.5.▼tApplications  --▼g4.6.6.▼tOther  image  representations  for  place  recognition  --▼g4.7.▼tFeature  Extraction  Based  on  Range  Data  (Laser,  Ultrasonic)  --▼g4.7.1.▼tLine  fitting  --▼g4.7.2.▼tSix  line-extraction  algorithms
■50500▼g4.7.3.▼tRange  histogram  features  --▼g4.7.4.▼tExtracting  other  geometric  features  --▼g4.8.▼tProblems  --▼g5.▼tMobile  Robot  Localization  --▼g5.1.▼tIntroduction  --▼g5.2.▼tThe  Challenge  of  Localization:  Noise  and  Aliasing  --▼g5.2.1.▼tSensor  noise  --▼g5.2.2.▼tSensor  aliasing  --▼g5.2.3.▼tEffector  noise  --▼g5.2.4.▼tAn  error  model  for  odometric  position  estimation  --▼g5.3.▼tTo  Localize  or  Not  to  Localize:  Localization-Based  Navigation  Versus  Programmed  Solutions  --▼g5.4.▼tBelief  Representation  --▼g5.4.1.▼tSingle-hypothesis  belief  --▼g5.4.2.▼tMultiple-hypothesis  belief  --▼g5.5.▼tMap  Representation  --▼g5.5.1.▼tContinuous  representations  --▼g5.5.2.▼tDecomposition  strategies  --▼g5.5.3.▼tState  of  the  art:  Current  challenges  in  map  representation  --▼g5.6.▼tProbabilistic  Map-Based  Localization  --▼g5.6.1.▼tIntroduction  --▼g5.6.2.▼tThe  robot  localization  problem  --▼g5.6.3.▼tBasic  concepts  of  probability  theory  --▼g5.6.4.▼tTerminology  --▼g5.6.5.▼tThe  ingredients  of  probabilistic  map-based  localization
■50500▼g5.6.6.▼tClassification  of  localization  problems  --▼g5.6.7.▼tMarkov  localization  --▼g5.6.8.▼tKalman  filter  localization  --▼g5.7.▼tOther  Examples  of  Localization  Systems  --▼g5.7.1.▼tLandmark-based  navigation  --▼g5.7.2.▼tGlobally  unique  localization  --▼g5.7.3.▼tPositioning  beacon  systems  --▼g5.7.4.▼tRoute-based  localization  --▼g5.8.▼tAutonomous  Map  Building  --▼g5.8.1.▼tIntroduction  --▼g5.8.2.▼tSLAM:  The  simultaneous  localization  and  mapping  problem  --▼g5.8.3.▼tMathematical  definition  of  SLAM  --▼g5.8.4.▼tExtended  Kalman  Filter  (EKF)  SLAM  --▼g5.8.5.▼tVisual  SLAM  with  a  single  camera  --▼g5.8.6.▼tDiscussion  on  EKF  SLAM  --▼g5.8.7.▼tGraph-based  SLAM  --▼g5.8.8.▼tParticle  filter  SLAM  --▼g5.8.9.▼tOpen  challenges  in  SLAM  --▼g5.8.10.▼tOpen  source  SLAM  software  and  other  resources  --▼g5.9.▼tProblems  --▼g6.▼tPlanning  and  Navigation  --▼g6.1.▼tIntroduction  --▼g6.2.▼tCompetences  for  Navigation:  Planning  and  Reacting  --▼g6.3.▼tPath  Planning  --▼g6.3.1.▼tGraph  search  --▼g6.3.2.▼tPotential  field  path  planning
■50500▼g6.4.▼tObstacle  avoidance  --▼g6.4.1.▼tBug  algorithm  --▼g6.4.2.▼tVector  field  histogram  --▼g6.4.3.▼tThe  bubble  band  technique  --▼g6.4.4.▼tCurvature  velocity  techniques  --▼g6.4.5.▼tDynamic  window  approaches  --▼g6.4.6.▼tThe  Schlegel  approach  to  obstacle  avoidance  --▼g6.4.7.▼tNearness  diagram  --▼g6.4.8.▼tGradient  method  --▼g6.4.9.▼tAdding  dynamic  constraints  --▼g6.4.10.▼tOther  approaches  --▼g6.4.11.▼tOverview  --▼g6.5.▼tNavigation  Architectures  --▼g6.5.1.▼tModularity  for  code  reuse  and  sharing  --▼g6.5.2.▼tControl  localization  --▼g6.5.3.▼tTechniques  for  decomposition  --▼g6.5.4.▼tCase  studies:  tiered  robot  architectures  --▼g6.6.▼tProblems  --▼tBibliography  --▼tBooks  --▼tPapers  --▼tReferenced  Webpages.
■520    ▼aMobile  robots  range  from  the  Mars  Pathfinder  mission's  teleoperated  Sojourner  to  the  cleaning  robots  in  the  Paris  Metro.  This  text  offers  students  and  other  interested  readers  an  introduction  to  the  fundamentals  of  mobile  robotics,  spanning  the  mechanical,  motor,  sensory,  perceptual,  and  cognitive  layers  the  field  comprises.  The  text  focuses  on  mobility  itself,  offering  an  overview  of  the  mechanisms  that  allow  a  mobile  robot  to  move  through  a  real  world  environment  to  perform  its  tasks,  including  locomotion,  sensing,  localization,  and  motion  planning.  It  synthesizes  material  from  such  fields  as  kinematics,  control  theory,  signal  analysis,  computer  vision,  information  theory,  artificial  intelligence,  and  probability  theory.  The  book  presents  the  techniques  and  technology  that  enable  mobility  in  a  series  of  interacting  modules.  Each  chapter  treats  a  different  aspect  of  mobility,  as  the  book  moves  from  low-level  to  high-level  details.  It  covers  all  aspects  of  mobile  robotics,  including  software  and  hardware  design  considerations,  related  technologies,  and  algorithmic  techniques.]  This  second  edition  has  been  revised  and  updated  throughout,  with  130  pages  of  new  material  on  such  topics  as  locomotion,  perception,  localization,  and  planning  and  navigation.  Problem  sets  have  been  added  at  the  end  of  each  chapter.  Bringing  together  all  aspects  of  mobile  robotics  into  one  volume,  Introduction  to  Autonomous  Mobile  Robots  can  serve  as  a  textbook  or  a  working  tool  for  beginning  practitioners.--publisher  description.
■588    ▼aDescription  based  on  print  version  record.
■650  0▼aMobile  robots
■650  0▼aAutonomous  robots
■650  7▼aTECHNOLOGY  &  ENGINEERING  /  Automation.▼2bisacsh
■655  4▼aElectronic  books.
■7001  ▼aNourbakhsh,  Illah  Reza▼d1970-
■7001  ▼aScaramuzza,  Davide.
■77608▼iPrint  version▼aSiegwart,  Roland.▼tIntroduction  to  autonomous  mobile  robots.▼dCambridge,  Mass.  :  MIT  Press,  c2011▼z9780262015356▼w(DLC)    2010028053▼w(OCoLC)649700153
■830  0▼aIntelligent  robotics  and  autonomous  agents.
■85640▼3EBSCOhost▼uhttp://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=550661
■938    ▼aYBP  Library  Services▼bYANK▼n3647547
■938    ▼aebrary▼bEBRY▼nebr10453037
■938    ▼aEBSCOhost▼bEBSC▼n550661
■994    ▼a92▼bK4R
■999    ▼z635217623907107158

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    EW0009793 EB   원문자료 대출가능 대출가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치