본문

서브메뉴

Frechet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces- [electronic resource]
Frechet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces- [electronic resource]

상세정보

자료유형  
 단행본
International Standard Book Number  
9781400842698 (electronic bk.)
International Standard Book Number  
1400842697 (electronic bk.)
International Standard Book Number  
9780691153551 (hbk.)
International Standard Book Number  
0691153558 (hbk.)
International Standard Book Number  
9780691153568 (pbk.)
International Standard Book Number  
0691153566 (pbk.)
Library of Congress Call Number  
QA322.2 .L564 2012
Dewey Decimal Classification Number  
515/.88
Main Entry-Personal Name  
Lindenstrauss, Joram.
Publication, Distribution, etc. (Imprint  
Princeton : Princeton University Press, 2012
Physical Description  
1 online resource (436 p)
Series Statement  
Annals of mathematics studies ; no. 179
General Note  
Description based upon print version of record.
General Note  
14.7 Proof of Theorem
Bibliography, Etc. Note  
Includes bibliographical references and index.
Formatted Contents Note  
완전내용Cover; Title Page; Copyright Page; Table of Contents; Chapter 1. Introduction; 1.1 Key notions and notation; Chapter 2. Gâteaux Dfferentiability of Lipschitz Functions; 2.1 Radon-Nikodým Property; 2.2 Haar and Aronszajn-Gauss Null Sets; 2.3 Existence Results for Gâteaux Derivatives; 2.4 Mean Value Estimates; Chapter 3. Smoothness, Convexity, Porosity, and Separable Determination; 3.1 A criterion of Differentiability of Convex Functions; 3.2 Fréchet Smooth and Nonsmooth Renormings; 3.3 Fréchet Differentiability of Convex Functions; 3.4 Porosity and Nondifferentiability
Formatted Contents Note  
완전내용3.5 Sets of Fréchet Differentiability Points3.6 Separable Determination; Chapter 4. e-Fréchet Differentiability; 4.1 e-Differentiability and Uniform Smoothness; 4.2 Asymptotic Uniform Smoothness; 4.3 e-Fréchet Differentiability of Functions on Asymptotically Smooth Spaces; Chapter 5. G-Null and Gn-Null Sets; 5.1 Introduction; 5.2 G-Null Sets and Gâteaux Differentiability; 5.3 Spaces of Surfaces; 5.4 G- and Gn-Null Sets of low Borel Classes; 5.5 Equivalent Definitions of Gn-Null Sets; 5.6 Separable Determination; Chapter 6. Fréchet Differentiability Except for G-Null Sets; 6.1 Introduction
Formatted Contents Note  
완전내용6.2 Regular Points6.3 A Criterion of Fréchet Differentiability; 6.4 Fréchet Differentiability Except for G-Null Sets; Chapter 7. Variational Principles; 7.1 Introduction; 7.2 Variational Principles via Games; 7.3 Bimetric Variational Principles; Chapter 8. Smoothness and Asymptotic Smoothness; 8.1 Modulus of Smoothness; 8.2 Smooth Bumps with Controlled Modulus; Chapter 9. Preliminaries to Main Results; 9.1 Notation, Linear Operators, Tensor Products; 9.2 Derivatives and Regularity; 9.3 Deformation of Surfaces Controlled by ?n; 9.4 Divergence Theorem; 9.5 Some Integral Estimates
Formatted Contents Note  
완전내용Chapter 10. Porosity, Gn- and G-Null Sets10.1 Porous and s-Porous Sets; 10.2 A Criterion of Gn-nullness of Porous Sets; 10.3 Directional Porosity and Gn-Nullness; 10.4 s-Porosity and Gn-Nullness; 10.5 G1-Nullness of Porous Sets and Asplundness; 10.6 Spaces in which s-Porous Sets are G-Null; Chapter 11. Porosity and e-Fréchet Differentiability; 11.1 Introduction; 11.2 Finite Dimensional Approximation; 11.3 Slices and e-Differentiability; Chapter 12. Fréchet Differentiability of Real-Valued Functions; 12.1 Introduction and Main Results; 12.2 An Illustrative Special Case
Formatted Contents Note  
완전내용12.3 A Mean Value Estimate12.4 Proof of Theorems; 12.5 Generalizations and Extensions; Chapter 13. Fréchet Differentiability of Vector-Valued Functions; 13.1 Main Results; 13.2 Regularity Parameter; 13.3 Reduction to a Special Case; 13.4 Regular Fréchet Differentiability; 13.5 Fréchet Differentiability; 13.6 Simpler Special Cases; Chapter 14. Unavoidable Porous Sets and Nondifferentiable Maps; 14.1 Introduction and Main Results; 14.2 An Unavoidable Porous Set in l1; 14.3 Preliminaries to Proofs of Main Results; 14.4 The Main Construction; 14.5 The Main Construction; 14.6 Proof of Theorem
Summary, Etc.  
요약This book makes a significant inroad into the unexpectedly difficult question of existence of Fréchet derivatives of Lipschitz maps of Banach spaces into higher dimensional spaces. Because the question turns out to be closely related to porous sets in Banach spaces, it provides a bridge between descriptive set theory and the classical topic of existence of derivatives of vector-valued Lipschitz functions. The topic is relevant to classical analysis and descriptive set theory on Banach spaces. The book opens several new research directions in this area of geometric nonlinear functional analysis.
Subject Added Entry-Topical Term  
Mathematics
Subject Added Entry-Topical Term  
Banach spaces
Subject Added Entry-Topical Term  
Calculus of variations
Subject Added Entry-Topical Term  
Functional analysis
Subject Added Entry-Topical Term  
MATHEMATICS / Calculus.
Subject Added Entry-Topical Term  
MATHEMATICS / Mathematical Analysis.
Added Entry-Personal Name  
Preiss, David.
Added Entry-Personal Name  
Tiaer, Jaroslav.
Additional Physical Form Entry  
Print version / Lindenstrauss, JoramFrechet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces. Princeton : Princeton University Press,c2012. 9780691153568
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:397209

MARC

 008111226s2012        nju          o          000  0  eng  d
■001                                        
■003OCoLC
■00520121210094822
■006m                d
■007cr  |n|
■019    ▼a781678708
■020    ▼a9781400842698  (electronic  bk.)
■020    ▼a1400842697  (electronic  bk.)
■020    ▼a9780691153551  (hbk.)
■020    ▼a0691153558  (hbk.)
■020    ▼a9780691153568  (pbk.)
■020    ▼a0691153566  (pbk.)
■0248  ▼a9786613379955
■035    ▼a(OCoLC)769343169
■037    ▼a337995▼bMIL
■040    ▼aEBLCP▼cEBLCP▼dN$T▼dCDX
■050  4▼aQA322.2  .L564  2012
■072  7▼aMAT▼x005000▼2bisacsh
■072  7▼aMAT▼x034000▼2bisacsh
■08204▼a515/.88
■1001  ▼aLindenstrauss,  Joram.
■24510▼aFrechet  Differentiability  of  Lipschitz  Functions  and  Porous  Sets  in  Banach  Spaces▼h[electronic  resource]
■260    ▼aPrinceton▼bPrinceton  University  Press▼c2012
■300    ▼a1  online  resource  (436  p)
■4900  ▼aAnnals  of  mathematics  studies▼vno.  179
■500    ▼aDescription  based  upon  print  version  of  record.
■500    ▼a14.7  Proof  of  Theorem
■504    ▼aIncludes  bibliographical  references  and  index.
■5050  ▼aCover;  Title  Page;  Copyright  Page;  Table  of  Contents;  Chapter  1.  Introduction;  1.1  Key  notions  and  notation;  Chapter  2.  Gâteaux  Dfferentiability  of  Lipschitz  Functions;  2.1  Radon-Nikodým  Property;  2.2  Haar  and  Aronszajn-Gauss  Null  Sets;  2.3  Existence  Results  for  Gâteaux  Derivatives;  2.4  Mean  Value  Estimates;  Chapter  3.  Smoothness,  Convexity,  Porosity,  and  Separable  Determination;  3.1  A  criterion  of  Differentiability  of  Convex  Functions;  3.2  Fréchet  Smooth  and  Nonsmooth  Renormings;  3.3  Fréchet  Differentiability  of  Convex  Functions;  3.4  Porosity  and  Nondifferentiability
■5058  ▼a3.5  Sets  of  Fréchet  Differentiability  Points3.6  Separable  Determination;  Chapter  4.  e-Fréchet  Differentiability;  4.1  e-Differentiability  and  Uniform  Smoothness;  4.2  Asymptotic  Uniform  Smoothness;  4.3  e-Fréchet  Differentiability  of  Functions  on  Asymptotically  Smooth  Spaces;  Chapter  5.  G-Null  and  Gn-Null  Sets;  5.1  Introduction;  5.2  G-Null  Sets  and  Gâteaux  Differentiability;  5.3  Spaces  of  Surfaces;  5.4  G-  and  Gn-Null  Sets  of  low  Borel  Classes;  5.5  Equivalent  Definitions  of  Gn-Null  Sets;  5.6  Separable  Determination;  Chapter  6.  Fréchet  Differentiability  Except  for  G-Null  Sets;  6.1  Introduction
■5058  ▼a6.2  Regular  Points6.3  A  Criterion  of  Fréchet  Differentiability;  6.4  Fréchet  Differentiability  Except  for  G-Null  Sets;  Chapter  7.  Variational  Principles;  7.1  Introduction;  7.2  Variational  Principles  via  Games;  7.3  Bimetric  Variational  Principles;  Chapter  8.  Smoothness  and  Asymptotic  Smoothness;  8.1  Modulus  of  Smoothness;  8.2  Smooth  Bumps  with  Controlled  Modulus;  Chapter  9.  Preliminaries  to  Main  Results;  9.1  Notation,  Linear  Operators,  Tensor  Products;  9.2  Derivatives  and  Regularity;  9.3  Deformation  of  Surfaces  Controlled  by  ?n;  9.4  Divergence  Theorem;  9.5  Some  Integral  Estimates
■5058  ▼aChapter  10.  Porosity,  Gn-  and  G-Null  Sets10.1  Porous  and  s-Porous  Sets;  10.2  A  Criterion  of  Gn-nullness  of  Porous  Sets;  10.3  Directional  Porosity  and  Gn-Nullness;  10.4  s-Porosity  and  Gn-Nullness;  10.5  G1-Nullness  of  Porous  Sets  and  Asplundness;  10.6  Spaces  in  which  s-Porous  Sets  are  G-Null;  Chapter  11.  Porosity  and  e-Fréchet  Differentiability;  11.1  Introduction;  11.2  Finite  Dimensional  Approximation;  11.3  Slices  and  e-Differentiability;  Chapter  12.  Fréchet  Differentiability  of  Real-Valued  Functions;  12.1  Introduction  and  Main  Results;  12.2  An  Illustrative  Special  Case
■5058  ▼a12.3  A  Mean  Value  Estimate12.4  Proof  of  Theorems;  12.5  Generalizations  and  Extensions;  Chapter  13.  Fréchet  Differentiability  of  Vector-Valued  Functions;  13.1  Main  Results;  13.2  Regularity  Parameter;  13.3  Reduction  to  a  Special  Case;  13.4  Regular  Fréchet  Differentiability;  13.5  Fréchet  Differentiability;  13.6  Simpler  Special  Cases;  Chapter  14.  Unavoidable  Porous  Sets  and  Nondifferentiable  Maps;  14.1  Introduction  and  Main  Results;  14.2  An  Unavoidable  Porous  Set  in  l1;  14.3  Preliminaries  to  Proofs  of  Main  Results;  14.4  The  Main  Construction;  14.5  The  Main  Construction;  14.6  Proof  of  Theorem
■520    ▼aThis  book  makes  a  significant  inroad  into  the  unexpectedly  difficult  question  of  existence  of  Fréchet  derivatives  of  Lipschitz  maps  of  Banach  spaces  into  higher  dimensional  spaces.  Because  the  question  turns  out  to  be  closely  related  to  porous  sets  in  Banach  spaces,  it  provides  a  bridge  between  descriptive  set  theory  and  the  classical  topic  of  existence  of  derivatives  of  vector-valued  Lipschitz  functions.  The  topic  is  relevant  to  classical  analysis  and  descriptive  set  theory  on  Banach  spaces.  The  book  opens  several  new  research  directions  in  this  area  of  geometric  nonlinear  functional  analysis.
■650  4▼aMathematics
■650  0▼aBanach  spaces
■650  0▼aCalculus  of  variations
■650  0▼aFunctional  analysis
■650  7▼aMATHEMATICS  /  Calculus.▼2bisacsh
■650  7▼aMATHEMATICS  /  Mathematical  Analysis.▼2bisacsh
■655  4▼aElectronic  books.
■7001  ▼aPreiss,  David.
■7001  ▼aTiaer,  Jaroslav.
■77608▼iPrint  version▼aLindenstrauss,  Joram▼tFrechet  Differentiability  of  Lipschitz  Functions  and  Porous  Sets  in  Banach  Spaces▼dPrinceton  :  Princeton  University  Press,c2012▼z9780691153568
■85640▼3EBSCOhost▼uhttp://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=421487
■938    ▼aEBL  -  Ebook  Library▼bEBLB▼nEBL827806
■938    ▼aCoutts  Information  Services▼bCOUT▼n20454929
■994    ▼a92▼bK4R
■999    ▼z634898670716585886

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    EW0008184 EB   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치